Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. (Modèles statistiques de courants pour mesurer la variabilité anatomique de courbes, de surfaces et de leur évolution)

This thesis is about the definition, the implementation and the evaluation of statistical models of variability of curves and surfaces based on currents in the context of Computational Anatomy. Currents were recently introduced in medical imaging in order to define a metric between curves and surfaces which does not assume point correspondence between structures. This metric was used to drive the registration of anatomical data. In this thesis, we propose to extend this tool to analyze the variability of anatomical structures via the inference of generative statistical models. Besides the definition and discussion of these models, we provide a numerical framework to deal efficiently with their estimation. Several applications on real anatomical database in brain and cardiac imaging tend to show the generality and relevance of the approach. In the first part of the manuscript, we extend the computational framework of currents by introducing new numerical tools for approximation and compression purposes. First, a rigorous discretization framework based on linearly spaced grids is provided: it enables to give finite-dimensional projection of currents which converges to the initial continuous representation as the grids become finer. This leads to a generic way to derive robust and efficient algorithms on currents, while controlling the numerical precision. This gives for instance a more stable numerical implementation of the registration algorithm of currents. Then, we define an approximation algorithm which gives a sparse representation of any currents at any desired accuracy via the search of an adapted basis for currents decomposition. This sparse representation is of great interest to compress large sets of anatomical data and to give interpretable representation of statistics on such data sets. In the second part, we define an original statistical model which considers a set of curves or surfaces as the result of random deformations of an unknown template plus random residual perturbations in the space of currents. The inference of such models on anatomical data enables to decompose the variability into a geometrical part (captured by diffeomorphisms) and a "texture" part (captured by the residual currents). This approach allows us to address three anatomical problems: first, the analysis of variability of a set of sulcal lines is used to describe the variability of the cortex surface, second, the inference of the model on set of white matter fiber bundles shows that both the geometrical part and the texture part may contain relevant anatomical information and, third, the variability analysis is used in a clinical context for the prediction of the remodeling of the right ventricle of the heart in patients suffering from Tetralogy of Fallot. In the third part, we define statistical models for shape evolution. First, we define a spatiotemporal registration scheme which maps the sets of longitudinal data of two subjects. This registration does not only account for the morphological differences between subjects but also for the difference in terms of speed of evolution. Then, we propose a statistical model which jointly estimates a mean scenario of evolution from a set of longitudinal data along with its spatiotemporal variability in the population. This four-dimensional analysis opens up new possibilities for characterizing pathologies in terms of variations of the growth process of anatomical structures.

[1]  Tal Geva,et al.  Indications and timing of pulmonary valve replacement after tetralogy of Fallot repair. , 2007, Seminars in thoracic and cardiovascular surgery. Pediatric cardiac surgery annual.

[2]  Alain Trouvé,et al.  Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..

[3]  Alain Trouvé,et al.  Measuring Brain Variability Via Sulcal Lines Registration: A Diffeomorphic Approach , 2007, MICCAI.

[4]  Kurunathan Ratnavelu,et al.  FRONTIERS IN PHYSICS , 2009 .

[5]  Alain Trouvé,et al.  Sparse Approximation of Currents for Statistics on Curves and Surfaces , 2008, MICCAI.

[6]  Paul M. Thompson,et al.  Detecting dynamic and genetic effects on brain structure using high-dimensional cortical pattern matching , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[7]  Alain Trouvé,et al.  Local Geometry of Deformable Templates , 2005, SIAM J. Math. Anal..

[8]  Stephen Johnson,et al.  Proceedings of a workshop. , 2003, Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.

[9]  Peter Schacht Calibration of the H1 liquid argon calorimeter , 1993 .

[10]  Baba C. Vemuri,et al.  A robust algorithm for point set registration using mixture of Gaussians , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[11]  W. V. Mayneord On a Law of Growth of Jensen's Rat Sarcoma , 1932 .

[12]  Patrick Garda,et al.  The H1 Neural Network Trigger Project , 2002 .

[13]  Thibault Frisson Mesure de la luminosité pour l'expérience H1 , 2006 .

[14]  F. James MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1 , 1994 .

[15]  Alan C. Evans,et al.  Maturation of white matter in the human brain: a review of magnetic resonance studies , 2001, Brain Research Bulletin.

[16]  Fabian Zomer A high power Fabry-Perot resonator for precision Compton polarimetry with the longitudinally polarised lepton beams at HERA , 2003 .

[17]  E. Meijering A chronology of interpolation: from ancient astronomy to modern signal and image processing , 2002, Proc. IEEE.

[18]  J. Gee,et al.  Geodesic estimation for large deformation anatomical shape averaging and interpolation , 2004, NeuroImage.

[19]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[20]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[21]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[22]  Guido Gerig,et al.  Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets , 2009, MICCAI.

[23]  E. Rutherford,et al.  The scattering of α and β particles by matter and the structure of the atom , 2012 .

[24]  Daniel Rueckert,et al.  Unbiased White Matter Atlas Construction Using Diffusion Tensor Images , 2007, MICCAI.

[25]  Tao Wang,et al.  A note on 'A fully parallel 3D thinning algorithm and its applications' , 2007, Pattern Recognit. Lett..

[26]  Anuj Srivastava,et al.  On Shape of Plane Elastic Curves , 2007, International Journal of Computer Vision.

[27]  Olivier Clatz,et al.  DTI registration with exact finite-strain differential , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[28]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[29]  J. Chadwick,et al.  Bakerian lecture.―The neutron , 1933 .

[30]  Alejandro F. Frangi,et al.  Large Diffeomorphic FFD Registration for Motion and Strain Quantification from 3D-US Sequences , 2009, FIMH.

[31]  Jean-Francois Mangin,et al.  Multisubject Non-rigid Registration of Brain MRI Using Intensity and Geometric Features , 2001, MICCAI.

[32]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[33]  Norman F. Ramsey,et al.  Electron-Proton Scattering at High Momentum Transfers , 1963 .

[34]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[35]  Rolf Bendl,et al.  Combination of intensity-based image registration with 3D simulation in radiation therapy , 2008, Physics in medicine and biology.

[36]  Darryl D. Holm,et al.  Hamiltonian Approach to Shape Spaces in a Diffeomorphic Framework : from the Discontinuous Image Matching Problem to a Stochastic Growth Model , 2009 .

[37]  L. Jones On a conjecture of Huber concerning the convergence of projection pursuit regression , 1987 .

[38]  Eileen Luders,et al.  Asymmetries of cortical thickness: effects of handedness, sex, and schizophrenia , 2007, Neuroreport.

[39]  F. D. de Waal,et al.  Bonobo sex and society. , 1995, Scientific American.

[40]  Stephen V. Musolino,et al.  The Equations: Icons of Knowledge , 2006 .

[41]  Marleen de Bruijne,et al.  Weight Preserving Image Registration for Monitoring Disease Progression in Lung CT , 2008, MICCAI.

[42]  C. Cotter The variational particle-mesh method for matching curves , 2007, 0712.0241.

[43]  Nicholas Ayache,et al.  Polyrigid and polyaffine transformations: A novel geometrical tool to deal with non-rigid deformations - Application to the registration of histological slices , 2005, Medical Image Anal..

[44]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[45]  R. Hofstadter,et al.  THE ELECTRON SCATTERING METHOD AND ITS APPLICATION TO THE STRUCTURE OF NUCLEI AND NUCLEONS , 1962 .

[46]  Alain Trouvé,et al.  Multi-scale diffeomorphic cortical registration under manifold sulcal constraints , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[47]  P. Waloschek,et al.  The Central jet chamber of the H1 experiment , 1989 .

[48]  Jürgen Naumann,et al.  Entwicklung und Test der dritten H1-Triggerstufe , 2003 .

[49]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[50]  Alain Trouvé,et al.  Bayesian template estimation in computational anatomy , 2008, NeuroImage.

[51]  Jerry L. Prince,et al.  Cortical Surface Alignment Using Geometry Driven Multispectral Optical Flow , 2005, IPMI.

[52]  Colin Studholme,et al.  A Spatio-temporal Atlas of the Human Fetal Brain with Application to Tissue Segmentation , 2009, MICCAI.

[53]  Karl J. Friston,et al.  Identifying Global Anatomical Differences: Deformation-Based Morphometry , 1998, NeuroImage.

[54]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[55]  Jean-Francois Mangin,et al.  Automatic recognition of cortical sulci of the human brain using a congregation of neural networks , 2002, Medical Image Anal..

[56]  J. S. Marron,et al.  Geometric representation of high dimension, low sample size data , 2005 .

[57]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[58]  Gilles Blanchard,et al.  Finite-Dimensional Projection for Classification and Statistical Learning , 2008 .

[59]  Carl-Fredrik Westin,et al.  Nonlinear Registration of Diffusion MR Images Based on Fiber Bundles , 2007, MICCAI.

[60]  Eberhard Zeidler,et al.  Applied Functional Analysis: Applications to Mathematical Physics , 1995 .

[61]  D. Roote,et al.  Status Report , 2006, Journal of periodontology.

[62]  Brian B. Avants,et al.  Geodesic Image Normalization and Temporal Parameterization in the Space of Diffeomorphisms , 2006, MIAR.

[63]  Daniel Rueckert,et al.  Construction of a Statistical Model for Cardiac Motion Analysis Using Nonrigid Image Registration , 2003, IPMI.

[64]  P. Thomas Fletcher,et al.  Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[65]  John H. Gilmore,et al.  Group Statistics of DTI Fiber Bundles Using Spatial Functions of Tensor Measures , 2008, MICCAI.

[66]  Paul M. Thompson,et al.  Brain structural mapping using a novel hybrid implicit/explicit framework based on the level-set method , 2005, NeuroImage.

[67]  Dorin Comaniciu,et al.  Fast Automatic Heart Chamber Segmentation from 3D CT Data Using Marginal Space Learning and Steerable Features , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[68]  Ringaile Placakyte,et al.  First Measurement of Charged Current Cross Sections with Longitudinally Polarised Positrons at HERA , 2006 .

[69]  齋藤 三郎,et al.  Theory of reproducing kernels and its applications , 1988 .

[70]  Maxime Gouzevitch,et al.  Mesure de la constante de couplage forte αs avec les jets hadroniques en diffusion inelastique profonde , 2008 .

[71]  Paul M. Thompson,et al.  Inferring brain variability from diffeomorphic deformations of currents: An integrative approach , 2008, Medical Image Anal..

[72]  Y. Samson,et al.  "Sulcal root" generic model: a hypothesis to overcome the variability of the human cortex folding patterns. , 2005, Neurologia medico-chirurgica.

[73]  Michael I. Miller,et al.  Large deformation diffeomorphic metric mapping of vector fields , 2005, IEEE Transactions on Medical Imaging.

[74]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[75]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[76]  J. M. Oller On an intrinsic analysis of statistical estimation , 1993 .

[77]  Stephen R. Marsland,et al.  A minimum description length objective function for groupwise non-rigid image registration , 2008, Image Vis. Comput..

[78]  Eileen Luders,et al.  Gender differences in cortical complexity , 2004, Nature Neuroscience.

[79]  Anuj Srivastava,et al.  A Novel Representation for Riemannian Analysis of Elastic Curves in Rn , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[80]  Pierre Hellier,et al.  Coupling dense and landmark-based approaches for nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[81]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[82]  Xavier Pennec,et al.  Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements , 1999, NSIP.

[83]  Olivier D. Faugeras,et al.  Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics , 2005, Found. Comput. Math..

[84]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[85]  Boris C. Bernhardt,et al.  A Statistical Model of Right Ventricle in Tetralogy of Fallot for Prediction of Remodelling and Therapy Planning , 2009, MICCAI.

[86]  Michael I. Miller,et al.  Diffeomorphic metric surface mapping in subregion of the superior temporal gyrus , 2007, NeuroImage.

[87]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[88]  Ali R. Khan,et al.  Representation of time-varying shapes in the large deformation diffeomorphic framework , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[89]  M. Unser,et al.  Interpolation Revisited , 2000, IEEE Trans. Medical Imaging.

[90]  Kiralee M. Hayashi,et al.  Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia , 2004, NeuroImage.

[91]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[92]  Fons Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[93]  Cristian Lorenz,et al.  Validation and comparison of registration methods for free-breathing 4D lung CT , 2008, SPIE Medical Imaging.

[94]  Dinggang Shen,et al.  HAMMER: hierarchical attribute matching mechanism for elastic registration , 2002, IEEE Transactions on Medical Imaging.

[95]  N. Ayache,et al.  Generation of a Statistical Shape Model with Probabilistic Point Correspondences and EM-ICP , .

[96]  Heinz Handels,et al.  Generation of a Mean Motion Model of the Lung Using 4D-CT Image Data , 2008, VCBM.

[97]  D. Mumford,et al.  An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach , 2006, math/0605009.

[98]  Nicholas Ayache,et al.  Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[99]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[100]  Suehisa Kuroda,et al.  DEVELOPMENTAL RETARDATION AND BEHAVIORAL CHARACTERISTICS OF PYGMY CHIMPANZEES , 1989 .

[101]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[102]  Martin Styner,et al.  Statistical Shape Analysis of Multi-Object Complexes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[103]  P. Thompson,et al.  Evaluating Brain Anatomical Correlations via Canonical Correlation Analysis of Sulcal Lines , 2007 .

[104]  Mert R. Sabuncu,et al.  Effects of registration regularization and atlas sharpness on segmentation accuracy , 2008, Medical Image Anal..

[105]  W. Kinzey,et al.  The Dentition of the Pygmy Chimpanzee, Pan paniscus , 1984 .

[106]  Michael I. Miller,et al.  Parallel Transport in Diffeomorphisms Distinguishes the Time-dependent Pattern of Hippocampal Surface Deformation Due to Healthy Aging and the Dementia of the Alzheimer's Type , 2007 .

[107]  Brian T. Shea,et al.  Heterochrony in human evolution: The case for neoteny reconsidered , 1989 .

[108]  D. Louis Collins,et al.  Object-based morphometry of the cerebral cortex , 2004, IEEE Transactions on Medical Imaging.

[109]  Timothy F. Cootes,et al.  Diffeomorphic Statistical Shape Models , 2008, BMVC.

[110]  Timothy F. Cootes,et al.  A Unified Information-Theoretic Approach to Groupwise Non-rigid Registration and Model Building , 2005, IPMI.

[111]  Jürgen Weese,et al.  Landmark-based elastic registration using approximating thin-plate splines , 2001, IEEE Transactions on Medical Imaging.

[112]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[113]  Benjamin Portheault,et al.  Première mesure des sections efficaces de courant chargé et neutre avec le faisceau de positrons polarisé à HERA II et analyses QCD-électrofaibles , 2005 .

[114]  Peter Lorenzen,et al.  Computational Anatomy to Assess Longitudinal Trajectory of Brain Growth , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[115]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[116]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[117]  A. Toga,et al.  High-Resolution Random Mesh Algorithms for Creating a Probabilistic 3D Surface Atlas of the Human Brain , 1996, NeuroImage.

[118]  et al,et al.  The H1 silicon vertex detector , 2000 .

[119]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[120]  E. Barrelet,et al.  The tracking calorimeter and muon detectors of the H1 experiment at Hera , 1996 .

[121]  Milan Sonka,et al.  Analysis of four-dimensional cardiac ventricular magnetic resonance images using statistical models of ventricular shape and cardiac motion , 2006, SPIE Medical Imaging.

[122]  Alain Trouvé,et al.  A Statistical Model of White Matter Fiber Bundles Based on Currents , 2009, IPMI.

[123]  Paul M. Thompson,et al.  Asymmetries of cortical shape: Effects of handedness, sex and schizophrenia , 2007, NeuroImage.

[124]  E. Barrelet,et al.  The H 1 liquid argon calorimeter system , 1993 .

[125]  Nicholas Ayache,et al.  Smoothing and matching of 3-d space curves , 2005, International Journal of Computer Vision.

[126]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[127]  David Mumford,et al.  Empirical Statistics and Stochastic Models for Visual Signals , 2006 .

[128]  Alain Trouvé,et al.  Statistical models of sets of curves and surfaces based on currents , 2009, Medical Image Anal..

[129]  A. Toga,et al.  Cortical variability and asymmetry in normal aging and Alzheimer's disease. , 1998, Cerebral cortex.

[130]  R. Bhattacharya,et al.  Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.

[131]  Christopher J. Taylor,et al.  Statistical models of shape - optimisation and evaluation , 2008 .

[132]  Margrit Betke,et al.  Landmark detection in the chest and registration of lung surfaces with an application to nodule registration , 2003, Medical Image Anal..

[133]  J. Chadwick,et al.  The existence of a neutron , 1932 .

[134]  O. Faugeras,et al.  Level set based segmentation with intensity and curvature priors , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[135]  Jason Frank,et al.  A Hamiltonian Particle-Mesh Method for the Rotating Shallow Water Equations , 2003 .

[136]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[137]  D. Mumford,et al.  Riemannian Geometries on Spaces of Plane Curves , 2003, math/0312384.

[138]  Olivier Clatz,et al.  DT-REFinD: Diffusion Tensor Registration With Exact Finite-Strain Differential , 2009, IEEE Transactions on Medical Imaging.

[139]  Estelle Kuhn,et al.  Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study , 2007, 0706.0787.

[140]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[141]  Nicholas Ayache,et al.  Definition of a 4 D continuous planispheric transformation for the tracking and the analysis of LV motion , 1998 .

[142]  W. Eric L. Grimson,et al.  Efficient Population Registration of 3D Data , 2005, CVBIA.

[143]  S. Kiebel,et al.  Detecting Structural Changes in Whole Brain Based on Nonlinear Deformations—Application to Schizophrenia Research , 1999, NeuroImage.

[144]  Karl J. Friston,et al.  Cerebral Asymmetry and the Effects of Sex and Handedness on Brain Structure: A Voxel-Based Morphometric Analysis of 465 Normal Adult Human Brains , 2001, NeuroImage.

[145]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[146]  Philippe Bruel,et al.  Recherche d'interactions au-dela du modele standard a hera , 1998 .

[147]  K. Mardia,et al.  A penalized likelihood approach to image warping , 2001 .

[148]  R. Holt,et al.  Polarized Gas Targets and Polarized Beams , 1998 .

[149]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[150]  Gary E. Christensen,et al.  Consistent landmark and intensity-based image registration , 2002, IEEE Transactions on Medical Imaging.

[151]  P. Hunter,et al.  Integration from proteins to organs: the Physiome Project , 2003, Nature Reviews Molecular Cell Biology.

[152]  Laurent Schwartz,et al.  Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (Noyaux reproduisants) , 1964 .

[153]  R. Castillo,et al.  A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets , 2009, Physics in medicine and biology.

[154]  The Aleph Collaboration,et al.  A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model , 2001, hep-ex/0612034.

[155]  Jason Frank,et al.  Conservation Properties of Smoothed Particle Hydrodynamics Applied to the Shallow Water Equation , 2001 .

[156]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[157]  Daniel Rueckert,et al.  Assessment of brain growth in early childhood using deformation-based morphometry , 2008, NeuroImage.

[158]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[159]  W. Eric L. Grimson,et al.  Probabilistic Clustering and Quantitative Analysis of White Matter Fiber Tracts , 2007, IPMI.

[160]  E. Duchesnay,et al.  A framework to study the cortical folding patterns , 2004, NeuroImage.

[161]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[162]  Christos Davatzikos,et al.  Hierarchical Matching of Cortical Features for Deformable Brain Image Registration , 1999, IPMI.

[163]  Olivier Faugeras,et al.  Knowledge-Based Segmentation of Medical Images , 2003 .

[164]  T. O’Neil Geometric Measure Theory , 2002 .

[165]  Michael I. Miller,et al.  Time sequence diffeomorphic metric mapping and parallel transport track time-dependent shape changes , 2009, NeuroImage.

[166]  David Mumford,et al.  Pattern Theory: the Mathematics of Perception , 2002, math/0212400.

[167]  Jody Hey,et al.  Divergence population genetics of chimpanzees. , 2004, Molecular biology and evolution.

[168]  Daniel Cremers,et al.  Dynamical statistical shape priors for level set-based tracking , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[169]  Xavier Pennec,et al.  Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration , 2002, ECCV.

[170]  R. J. Crewther,et al.  Introduction to quantum field theory , 1995, hep-th/9505152.

[171]  Y. Couder,et al.  Developmental Patterning by Mechanical Signals in Arabidopsis , 2009 .

[172]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[173]  Frank Close Deep inelastic scattering , 1990 .

[174]  E. Barrelet,et al.  Events with an isolated lepton and missing transverse momentum and measurement of W production at HERA , 2009, 0911.0858.

[175]  Joan Alexis Glaunès Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l'anatomie numérique , 2005 .

[176]  Alain Trouvé,et al.  A Forward Model to Build Unbiased Atlases from Curves and Surfaces , 2008 .

[177]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[178]  D. Kendall A Survey of the Statistical Theory of Shape , 1989 .

[179]  Hervé Delingette,et al.  Registration of 4D Time-Series of Cardiac Images with Multichannel Diffeomorphic Demons , 2008, MICCAI.

[180]  David Cohen-Steiner,et al.  Approximation of the Curvature Measures of a Smooth Surface endowed with a Mesh , 2003 .

[181]  Mert R. Sabuncu,et al.  Asymmetric Image-Template Registration , 2009, MICCAI.

[182]  Paul M. Thompson,et al.  Measuring brain variability by extrapolating sparse tensor fields measured on sulcal lines , 2007, NeuroImage.

[183]  Paul M. Thompson,et al.  Automated Surface Matching Using Mutual Information Applied to Riemann Surface Structures , 2005, MICCAI.

[184]  D Stambach,et al.  The right ventricle in tetralogy of Fallot , 2009 .

[185]  A. Connelly,et al.  Quantification of the shape of fiber tracts , 2006, Magnetic resonance in medicine.

[186]  Xose Manuel Pardo,et al.  Integrating prior shape models into level-set approaches , 2004, Pattern Recognit. Lett..

[187]  Saburou Saitoh,et al.  Theory of Reproducing Kernels and Its Applications , 1988 .

[188]  F. White,et al.  The last ape. Pygmy chimpanzee behavior and ecology , 1993, International Journal of Primatology.

[189]  Karl J. Friston,et al.  Why Voxel-Based Morphometry Should Be Used , 2001, NeuroImage.

[190]  Darryl D. Holm,et al.  Discrete momentum maps for lattice EPDiff , 2006, math/0602296.

[191]  Nicholas Ayache,et al.  Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration , 2010, IEEE Transactions on Medical Imaging.

[192]  Karl J. Friston,et al.  High-Dimensional Image Registration Using Symmetric Priors , 1999, NeuroImage.

[193]  L. Younes,et al.  Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.

[194]  Nicholas Ayache,et al.  Insight into Efficient Image Registration Techniques and the Demons Algorithm , 2007, IPMI.

[195]  Michael I. Miller,et al.  Large Deformation Diffeomorphic Metric Curve Mapping , 2008, International Journal of Computer Vision.

[196]  A. Toga,et al.  A SURFACE-BASED TECHNIQUE FOR WARPING 3-DIMENSIONAL IMAGES OF THE BRAIN , 2000 .

[197]  E. Barrelet,et al.  The H1 lead/scintillating-fibre calorimeter , 1997 .

[198]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[199]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[200]  Stephen R. Marsland,et al.  Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images , 2004, IEEE Transactions on Medical Imaging.

[201]  Karl J. Friston,et al.  Computing average shaped tissue probability templates , 2009, NeuroImage.

[202]  Adil Aktas,et al.  Messung von polarisierten Wirkungsquerschnitten des geladenen Stromes bei HERA , 2005 .

[203]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[204]  Stanley Durrleman,et al.  Curve- and surface-based registration of lung CT images via currents , 2009 .

[205]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[206]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[207]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[208]  Jean-Francois Mangin,et al.  MR Diffusion-Based Inference of a Fiber Bundle Model from a Population of Subjects , 2005, MICCAI.

[209]  Michael Jerosch-Herold,et al.  Three-dimensional shape analysis of right ventricular remodeling in repaired tetralogy of Fallot. , 2008, The American journal of cardiology.

[210]  Alan C. Evans,et al.  Statistical Sulcal Shape Comparisons: Application to the Detection of Genetic Encoding of the Central Sulcus Shape , 2000, NeuroImage.

[211]  U. Grenander,et al.  Hippocampal morphometry in schizophrenia by high dimensional brain mapping. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[212]  K. Borras,et al.  An improved weighting algorithm to achieve software compensation in a fine grained LAr calorimeter , 2005 .

[213]  Jean-Francois Mangin,et al.  Registration of Cortical Connectivity Matrices , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[214]  S. Joshi,et al.  Template estimation form unlabeled point set data and surfaces for Computational Anatomy , 2006 .

[215]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[216]  H. Cartan,et al.  Les travaux de Georges de Rham sur les variétés différentiables , 1970 .

[217]  Anand Rangarajan,et al.  Unsupervised learning of an Atlas from unlabeled point-sets , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[218]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[219]  Paul M. Thompson,et al.  What is where and why it is important , 2007, NeuroImage.

[220]  John H. Gilmore,et al.  Fiber Tract-Oriented Statistics for Quantitative Diffusion Tensor MRI Analysis , 2005, MICCAI.

[221]  Alan C. Evans,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2000, Nature.

[222]  Mert R. Sabuncu,et al.  Discovering Modes of an Image Population through Mixture Modeling , 2008, MICCAI.

[223]  David Cohen-Steiner,et al.  Approximation of Normal Cycles , 2003 .