Parametrizing Wing Surfaces using Partial Differential Equations

A method is presented for generating three-dimensional surface data given two-dimensional section data. The application on which this paper concentrates is that of producing wing surfaces through a set of airfoil sections. It is an extension of a new method for the the efficient parametrization of complex three-dimensional shapes, called the PDE Method. The method views surface generation as a boundary-value problem, and produces surfaces as the solutions to elliptic partial differential equations.

[1]  J. O. Hager,et al.  Airfoil design optimization using the Navier-Stokes equations , 1994 .

[2]  R. Lowrie,et al.  Evaluation of Euler solvers for transonic wing-fuselage geometries , 1991 .

[3]  Sinan Eyi,et al.  Aerodynamic design via optimization , 1992 .

[4]  E. Robert,et al.  Rapid Airplane Parametric Input Design (RAPID) , 1995 .

[5]  H. Voelcker,et al.  Solid modeling: current status and research directions , 1983, IEEE Computer Graphics and Applications.

[6]  Sinan Eyi,et al.  Two-point transonic airfoil design using optimization for improved off-design performance , 1994 .

[7]  Malcolm I. G. Bloor,et al.  Efficient parametrization of generic aircraft geometry , 1995 .

[8]  J. Van der Vooren,et al.  Inviscid drag prediction for transonic transport wings using a full-potential method , 1991 .

[9]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  K. Yiu Computational methods for aerodynamic shape design , 1994 .

[11]  Leland M. Nicolai Fundamentals of Aircraft Design , 1984 .

[12]  Leland A. Carlson,et al.  Aerodynamic sensitivity coefficients using the three-dimensional full potential equation , 1994 .

[13]  Curtis F. Gerald Applied numerical analysis , 1970 .

[14]  Raphael T. Haftka,et al.  Variable-complexity aerodynamic optimization of a high-speed civil transport wing , 1994 .

[15]  J. W. Slooff,et al.  Computational methods for subsonic and transonic aerodynamic design , 1983 .

[16]  Joshua Kiddy K. Asamoah,et al.  Fractal–fractional age-structure study of omicron SARS-CoV-2 variant transmission dynamics , 2022, Partial Differential Equations in Applied Mathematics.

[17]  P. G. Coen,et al.  Supersonic transport wing minimum weight design integrating aerodynamics and structures , 1994 .

[18]  Daniel P. Raymer,et al.  Aircraft Design: A Conceptual Approach , 1989 .