The volumetric rate of superluminous supernovae at z ∼ 1
暂无分享,去创建一个
M. Sullivan | N. V. Karpenka | A. Levan | Mathew Smith | D. Howell | M. Smith | C. Lidman | V. Ruhlmann-Kleider | R. Carlberg | C. Pritchet | S. Prajs | C. Balland | R. Pain | W. M. Wolf | T. Edwards | T. Edwards | C. Walker | A. Howell | M. Sullivan
[1] M. P. Hobson,et al. Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.
[2] H Germany,et al. Spectrum formation in superluminous supernovae (Type I) , 2016, 1603.00388.
[3] S. Smartt,et al. Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves , 2015, 1511.03740.
[4] D. Malesani,et al. POLARIMETRY OF THE SUPERLUMINOUS SUPERNOVA LSQ14MO: NO EVIDENCE FOR SIGNIFICANT DEVIATIONS FROM SPHERICAL SYMMETRY , 2015, 1511.04522.
[5] P. Astier,et al. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP , 2015, 1511.00704.
[6] K. Nomoto,et al. TYPE I SUPERLUMINOUS SUPERNOVAE AS EXPLOSIONS INSIDE NON-HYDROGEN CIRCUMSTELLAR ENVELOPES , 2015, 1510.00834.
[7] K. Wiersema,et al. LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION , 2015, 1509.08945.
[8] E. Ofek,et al. DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA , 2015, 1508.04420.
[9] A. Levan,et al. Swift J1112.2−8238: a candidate relativistic tidal disruption flare , 2015, 1507.03582.
[10] D. A. Kann,et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.
[11] M. Sullivan,et al. LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE , 2015, 1505.01078.
[12] K. Maguire,et al. On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.
[13] M. Sullivan,et al. DES13S2cmm: the first superluminous supernova from the Dark Energy Survey , 2015, 1501.07232.
[14] E. Ofek,et al. The rising light curves of Type Ia supernovae , 2014, 1411.1064.
[15] D. Malesani,et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.
[16] R. Kotak,et al. Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 medium deep survey , 2014, 1402.1631.
[17] Z. Dai,et al. SUPERLUMINOUS SUPERNOVAE POWERED BY MAGNETARS: LATE-TIME LIGHT CURVES AND HARD EMISSION LEAKAGE , 2014, 1411.5126.
[18] David O. Jones,et al. ZOOMING IN ON THE PROGENITORS OF SUPERLUMINOUS SUPERNOVAE WITH THE HST , 2014, 1411.1060.
[19] E. Ofek,et al. THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION , 2014, 1409.8287.
[20] S. Smartt,et al. SUPERLUMINOUS SUPERNOVAE AS STANDARDIZABLE CANDLES AND HIGH-REDSHIFT DISTANCE PROBES , 2014, 1409.4429.
[21] E. Pian,et al. An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars , 2014, 1406.1209.
[22] M. Sullivan,et al. Superluminous supernovae from PESSTO , 2014, 1405.1325.
[23] W. M. Wood-Vasey,et al. The superluminous supernova PS1-11ap: bridging the gap between low and high redshift , 2013, 1310.4417.
[24] Bing Zhang,et al. HOW LONG DOES A BURST BURST? , 2013, 1310.2540.
[25] S. Smartt,et al. HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.
[26] A. Pastorello,et al. Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.
[27] P. Astier,et al. TWO SUPERLUMINOUS SUPERNOVAE FROM THE EARLY UNIVERSE DISCOVERED BY THE SUPERNOVA LEGACY SURVEY , 2013, 1310.0470.
[28] A. Mazure,et al. The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.
[29] J. Wheeler,et al. ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: χ2-MINIMIZATION OF PARAMETER FITS , 2013, 1306.3447.
[30] A. Pastorello,et al. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.
[31] A. Levan,et al. SUPERLUMINOUS X-RAYS FROM A SUPERLUMINOUS SUPERNOVA , 2013, 1304.1173.
[32] S. Smartt,et al. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY , 2013, 1303.1531.
[33] P. Jakobsson,et al. A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS , 2013, 1302.2352.
[34] J. Wheeler,et al. Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.
[35] K. Schahmaneche,et al. Improved Photometric Calibration of the SNLS and the SDSS Supernova Surveys , 2012, 1212.4864.
[36] I. Hook,et al. An Efficient Approach to Obtaining Large Numbers of Distant Supernova Host Galaxy Redshifts , 2012, Publications of the Astronomical Society of Australia.
[37] B. Gendre,et al. THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT? , 2012, 1212.2392.
[38] Jeff Cooke,et al. Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.
[39] R. Kotak,et al. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION , 2012, 1210.4027.
[40] A. Gal-yam. Luminous Supernovae , 2012, Science.
[41] J. Neill,et al. EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY , 2012, 1206.0665.
[42] T. Piran,et al. The Swift short gamma-ray burst rate density: implications for binary neutron star merger rates , 2012, 1202.2179.
[43] K. L. Page,et al. The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33 , 2011, Nature.
[44] P. Giommi,et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole , 2011, Nature.
[45] Eran O. Ofek,et al. SWIFT J2058.4+0516: DISCOVERY OF A POSSIBLE SECOND RELATIVISTIC TIDAL DISRUPTION FLARE? , 2011, 1107.5307.
[46] W. M. Wood-Vasey,et al. Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9 , 2011, 1107.3552.
[47] E. O. Ofek,et al. An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy , 2011, Science.
[48] Nathaniel R. Butler,et al. A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.
[49] M. Sullivan,et al. SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.
[50] S. Djorgovski,et al. THE DISCOVERY AND NATURE OF THE OPTICAL TRANSIENT CSS100217:102913+404220 , 2011, 1103.5514.
[51] R. Chevalier,et al. SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.
[52] E. O. Ofek,et al. Hydrogen-poor superluminous stellar explosions , 2009, Nature.
[53] M. Sullivan,et al. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.
[54] Las Cumbres Observatory Global Telescope Network,et al. ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.
[55] M. Sullivan,et al. Supernova Legacy Survey: using spectral signatures to improve Type Ia supernovae as distance indicators , 2010, 1008.2308.
[56] P. Best,et al. Predicting dust extinction from the stellar mass of a galaxy , 2010, 1007.1145.
[57] I. Hook,et al. REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY , 2010, 1006.2254.
[58] Lars Bildsten,et al. SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.
[59] S. Woosley. BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.
[60] J. Neill,et al. THE EXTREME HOSTS OF EXTREME SUPERNOVAE , 2010, 1011.3512.
[61] M. Sullivan,et al. The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey , 2009, 0909.3316.
[62] M. Sullivan,et al. The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.
[63] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[64] K. Dawson,et al. DISCOVERY OF AN UNUSUAL OPTICAL TRANSIENT WITH THE HUBBLE SPACE TELESCOPE , 2008, 0809.1648.
[65] R. Ellis,et al. Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.
[66] S. Woosley,et al. Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.
[67] Berkeley,et al. SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae , 2007, 0709.0859.
[68] Robert M. Quimby,et al. SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.
[69] F. Feroz,et al. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.
[70] S. Roweis,et al. K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.
[71] Charles E. Hansen,et al. SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.
[72] E. O. Ofek,et al. SN 2006gy: An Extremely Luminous Supernova in the Galaxy NGC 1260 , 2006 .
[73] S. Maddox,et al. zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.
[74] M. Sullivan,et al. The Type Ia Supernova Rate at z ≈ 0.5 from the Supernova Legacy Survey , 2006, astro-ph/0605148.
[75] B. Garilli,et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.
[76] A. Hopkins,et al. On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.
[77] J. Neill,et al. Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.
[78] J. Neill,et al. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.
[79] J. M. Oschmann,et al. Ground-based Telescopes , 2004 .
[80] M. Wolff,et al. A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .
[81] A. Moorwood,et al. Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .
[82] D. Borgne,et al. Photometric redshifts from evolutionary synthesis with PÉGASE: The code Z-PEG and the z=0 age constraint , 2002, astro-ph/0202359.
[83] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[84] W. Arnett. Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .
[85] Bengt Aspvall,et al. Khachiyan's Linear Programming Algorithm , 1980, J. Algorithms.
[86] L. Khachiyan. Polynomial algorithms in linear programming , 1980 .