The volumetric rate of superluminous supernovae at z ∼ 1

We present a measurement of the volumetric rate of superluminous supernovae (SLSNe) at z ? 1.0, measured using archival data from the first four years of the Canada–France–Hawaii Telescope Supernova Legacy Survey (SNLS). We develop a method for the photometric classification of SLSNe to construct our sample. Our sample includes two previously spectroscopically identified objects, and a further new candidate selected using our classification technique. We use the point-source recovery efficiencies from Perrett et al. and a Monte Carlo approach to calculate the rate based on our SLSN sample. We find that the three identified SLSNe from SNLS give a rate of 91+76?36 SNe yr?1 Gpc?3 at a volume-weighted redshift of z = 1.13. This is equivalent to 2.2+1.8?0.9×10?4 of the volumetric core-collapse supernova rate at the same redshift. When combined with other rate measurements from the literature, we show that the rate of SLSNe increases with redshift in a manner consistent with that of the cosmic star formation history. We also estimate the rate of ultra-long gamma-ray bursts based on the events discovered by the Swift satellite, and show that it is comparable to the rate of SLSNe, providing further evidence of a possible connection between these two classes of events. We also examine the host galaxies of the SLSNe discovered in SNLS, and find them to be consistent with the stellar-mass distribution of other published samples of SLSNe.

[1]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[2]  H Germany,et al.  Spectrum formation in superluminous supernovae (Type I) , 2016, 1603.00388.

[3]  S. Smartt,et al.  Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves , 2015, 1511.03740.

[4]  D. Malesani,et al.  POLARIMETRY OF THE SUPERLUMINOUS SUPERNOVA LSQ14MO: NO EVIDENCE FOR SIGNIFICANT DEVIATIONS FROM SPHERICAL SYMMETRY , 2015, 1511.04522.

[5]  P. Astier,et al.  RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP , 2015, 1511.00704.

[6]  K. Nomoto,et al.  TYPE I SUPERLUMINOUS SUPERNOVAE AS EXPLOSIONS INSIDE NON-HYDROGEN CIRCUMSTELLAR ENVELOPES , 2015, 1510.00834.

[7]  K. Wiersema,et al.  LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION , 2015, 1509.08945.

[8]  E. Ofek,et al.  DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA , 2015, 1508.04420.

[9]  A. Levan,et al.  Swift J1112.2−8238: a candidate relativistic tidal disruption flare , 2015, 1507.03582.

[10]  D. A. Kann,et al.  A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.

[11]  M. Sullivan,et al.  LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE , 2015, 1505.01078.

[12]  K. Maguire,et al.  On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.

[13]  M. Sullivan,et al.  DES13S2cmm: the first superluminous supernova from the Dark Energy Survey , 2015, 1501.07232.

[14]  E. Ofek,et al.  The rising light curves of Type Ia supernovae , 2014, 1411.1064.

[15]  D. Malesani,et al.  Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.

[16]  R. Kotak,et al.  Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 medium deep survey , 2014, 1402.1631.

[17]  Z. Dai,et al.  SUPERLUMINOUS SUPERNOVAE POWERED BY MAGNETARS: LATE-TIME LIGHT CURVES AND HARD EMISSION LEAKAGE , 2014, 1411.5126.

[18]  David O. Jones,et al.  ZOOMING IN ON THE PROGENITORS OF SUPERLUMINOUS SUPERNOVAE WITH THE HST , 2014, 1411.1060.

[19]  E. Ofek,et al.  THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION , 2014, 1409.8287.

[20]  S. Smartt,et al.  SUPERLUMINOUS SUPERNOVAE AS STANDARDIZABLE CANDLES AND HIGH-REDSHIFT DISTANCE PROBES , 2014, 1409.4429.

[21]  E. Pian,et al.  An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars , 2014, 1406.1209.

[22]  M. Sullivan,et al.  Superluminous supernovae from PESSTO , 2014, 1405.1325.

[23]  W. M. Wood-Vasey,et al.  The superluminous supernova PS1-11ap: bridging the gap between low and high redshift , 2013, 1310.4417.

[24]  Bing Zhang,et al.  HOW LONG DOES A BURST BURST? , 2013, 1310.2540.

[25]  S. Smartt,et al.  HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.

[26]  A. Pastorello,et al.  Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.

[27]  P. Astier,et al.  TWO SUPERLUMINOUS SUPERNOVAE FROM THE EARLY UNIVERSE DISCOVERED BY THE SUPERNOVA LEGACY SURVEY , 2013, 1310.0470.

[28]  A. Mazure,et al.  The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.

[29]  J. Wheeler,et al.  ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: χ2-MINIMIZATION OF PARAMETER FITS , 2013, 1306.3447.

[30]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[31]  A. Levan,et al.  SUPERLUMINOUS X-RAYS FROM A SUPERLUMINOUS SUPERNOVA , 2013, 1304.1173.

[32]  S. Smartt,et al.  PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY , 2013, 1303.1531.

[33]  P. Jakobsson,et al.  A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS , 2013, 1302.2352.

[34]  J. Wheeler,et al.  Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.

[35]  K. Schahmaneche,et al.  Improved Photometric Calibration of the SNLS and the SDSS Supernova Surveys , 2012, 1212.4864.

[36]  I. Hook,et al.  An Efficient Approach to Obtaining Large Numbers of Distant Supernova Host Galaxy Redshifts , 2012, Publications of the Astronomical Society of Australia.

[37]  B. Gendre,et al.  THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT? , 2012, 1212.2392.

[38]  Jeff Cooke,et al.  Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.

[39]  R. Kotak,et al.  THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION , 2012, 1210.4027.

[40]  A. Gal-yam Luminous Supernovae , 2012, Science.

[41]  J. Neill,et al.  EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY , 2012, 1206.0665.

[42]  T. Piran,et al.  The Swift short gamma-ray burst rate density: implications for binary neutron star merger rates , 2012, 1202.2179.

[43]  K. L. Page,et al.  The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33 , 2011, Nature.

[44]  P. Giommi,et al.  Relativistic jet activity from the tidal disruption of a star by a massive black hole , 2011, Nature.

[45]  Eran O. Ofek,et al.  SWIFT J2058.4+0516: DISCOVERY OF A POSSIBLE SECOND RELATIVISTIC TIDAL DISRUPTION FLARE? , 2011, 1107.5307.

[46]  W. M. Wood-Vasey,et al.  Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9 , 2011, 1107.3552.

[47]  E. O. Ofek,et al.  An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy , 2011, Science.

[48]  Nathaniel R. Butler,et al.  A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.

[49]  M. Sullivan,et al.  SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.

[50]  S. Djorgovski,et al.  THE DISCOVERY AND NATURE OF THE OPTICAL TRANSIENT CSS100217:102913+404220 , 2011, 1103.5514.

[51]  R. Chevalier,et al.  SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.

[52]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[53]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[54]  Las Cumbres Observatory Global Telescope Network,et al.  ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.

[55]  M. Sullivan,et al.  Supernova Legacy Survey: using spectral signatures to improve Type Ia supernovae as distance indicators , 2010, 1008.2308.

[56]  P. Best,et al.  Predicting dust extinction from the stellar mass of a galaxy , 2010, 1007.1145.

[57]  I. Hook,et al.  REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY , 2010, 1006.2254.

[58]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[59]  S. Woosley BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.

[60]  J. Neill,et al.  THE EXTREME HOSTS OF EXTREME SUPERNOVAE , 2010, 1011.3512.

[61]  M. Sullivan,et al.  The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey , 2009, 0909.3316.

[62]  M. Sullivan,et al.  The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.

[63]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[64]  K. Dawson,et al.  DISCOVERY OF AN UNUSUAL OPTICAL TRANSIENT WITH THE HUBBLE SPACE TELESCOPE , 2008, 0809.1648.

[65]  R. Ellis,et al.  Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.

[66]  S. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[67]  Berkeley,et al.  SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae , 2007, 0709.0859.

[68]  Robert M. Quimby,et al.  SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.

[69]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[70]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[71]  Charles E. Hansen,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[72]  E. O. Ofek,et al.  SN 2006gy: An Extremely Luminous Supernova in the Galaxy NGC 1260 , 2006 .

[73]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[74]  M. Sullivan,et al.  The Type Ia Supernova Rate at z ≈ 0.5 from the Supernova Legacy Survey , 2006, astro-ph/0605148.

[75]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[76]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[77]  J. Neill,et al.  Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.

[78]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[79]  J. M. Oschmann,et al.  Ground-based Telescopes , 2004 .

[80]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[81]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[82]  D. Borgne,et al.  Photometric redshifts from evolutionary synthesis with PÉGASE: The code Z-PEG and the z=0 age constraint , 2002, astro-ph/0202359.

[83]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[84]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[85]  Bengt Aspvall,et al.  Khachiyan's Linear Programming Algorithm , 1980, J. Algorithms.

[86]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .