Hosoya polynomial of composite graphs

Abstract Let G 1 + G 2 , G 1 ∇ G 2 , G 1 [ G 2 ], G 1 ∘ G 2 and G 1 { G 2 } be the sum, join, composition, corona and cluster, respectively, of the graphs G 1 and G 2 . Elsewhere, Yeh and Gutman computed the Wiener number of these composite graphs. In this paper, we generalize their results to compute the Hosoya polynomial of these graphs.

[1]  Peter Winkler Mean distance in a tree , 1990, Discret. Appl. Math..

[2]  I. Gutman,et al.  Some recent results in the theory of the Wiener number , 1993 .

[3]  Haruo Hosoya,et al.  On some counting polynomials in chemistry , 1988, Discret. Appl. Math..

[4]  Russell Merris,et al.  An edge version of the matrix-tree theorem and the wiener index , 1989 .

[5]  Frank Harary,et al.  Status and Contrastatus , 1959 .

[6]  Ľubomír Šoltés,et al.  Transmission in graphs: A bound and vertex removing , 1991 .

[7]  J. K. Doyle,et al.  Mean distance in a graph , 1977, Discret. Math..

[8]  Frank Harary,et al.  Distance in graphs , 1990 .

[9]  Ivan Gutman,et al.  On the sum of all distances in composite graphs , 1994, Discret. Math..

[10]  Sandi Klavzar,et al.  Wiener Number of Vertex-weighted Graphs and a Chemical Application , 1997, Discret. Appl. Math..

[11]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[12]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[13]  Ivan Gutman,et al.  A Collective Property of Trees and Chemical Trees , 1998, J. Chem. Inf. Comput. Sci..

[14]  Ingo Althöfer Average distances in undirected graphs and the removal of vertices , 1990, J. Comb. Theory, Ser. B.

[15]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[16]  Ernesto Estrada,et al.  Extended Wiener indices. A new set of descriptors for quantitative structure-property studies , 1998 .