Extremes of the internal energy of the Potts model on cubic graphs

We prove tight upper and lower bounds on the internal energy per particle (expected number of monochromatic edges per vertex) in the anti‐ferromagnetic Potts model on cubic graphs at every temperature and for all q≥2 . This immediately implies corresponding tight bounds on the anti‐ferromagnetic Potts partition function. Taking the zero‐temperature limit gives new results in extremal combinatorics: the number of q‐colorings of a 3‐regular graph, for any q≥2 , is maximized by a union of K3,3 's. This proves the d = 3 case of a conjecture of Galvin and Tetali.

[1]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[2]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  F. Y. Wu The Potts model , 1982 .

[4]  Nathan Linial,et al.  Legal coloring of graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[5]  Felix Lazebnik On the greatest number of 2 and 3 colorings of a (v, e)-graph , 1989, J. Graph Theory.

[6]  Felix Lazebnik,et al.  New upper bounds for the greatest number of proper colorings of a (V, E)-graph , 1990, J. Graph Theory.

[7]  S. Kak Information, physics, and computation , 1996 .

[8]  D. Welsh,et al.  The Potts model and the Tutte polynomial , 2000 .

[9]  Prasad Tetali,et al.  On Weighted Graph Homomorphisms , 2001, Graphs, Morphisms and Statistical Physics.

[10]  Jeff Kahn,et al.  An Entropy Approach to the Hard-Core Model on Bipartite Graphs , 2001, Combinatorics, Probability and Computing.

[11]  V. Akila,et al.  Information , 2001, The Lancet.

[12]  Alan D. Sokal,et al.  Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions , 1999, Combinatorics, Probability and Computing.

[13]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[14]  A. D. Forbes,et al.  On independent sets , 2005 .

[15]  David J. Galvin Bounding the Partition Function of Spin-Systems , 2006, Electron. J. Comb..

[16]  Felix Lazebnik,et al.  Maximum number of colorings of (2k, k2)‐graphs , 2007, J. Graph Theory.

[17]  F. Lazebnik,et al.  Maximum number of colorings of (2k, k 2 )-graphs , 2007 .

[18]  I. Shparlinski,et al.  Pseudoprime reductions of elliptic curves , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  O. Pikhurko,et al.  Maximizing the number of q‐colorings , 2008, 0811.2625.

[20]  Yufei Zhao,et al.  The Bipartite Swapping Trick on Graph Homomorphisms , 2011, SIAM J. Discret. Math..

[21]  Nicholas Ruozzi,et al.  The Bethe Partition Function of Log-supermodular Graphical Models , 2012, NIPS.

[22]  David Galvin,et al.  Maximizing H‐Colorings of a Regular Graph , 2011, J. Graph Theory.

[23]  Nicholas Ruozzi,et al.  Beyond Log-Supermodularity: Lower Bounds and the Bethe Partition Function , 2013, UAI.

[24]  O. Parczyk,et al.  On Sidorenko's Conjecture , 2014 .

[25]  David Galvin Counting Colorings of a Regular Graph , 2015, Graphs Comb..

[26]  P'eter Csikv'ari Extremal regular graphs: the case of the infinite regular tree , 2016, 1612.01295.

[27]  B. Roberts,et al.  On the average size of independent sets in triangle-free graphs , 2016, 1606.01043.

[28]  Will Perkins,et al.  On the Widom-Rowlinson Occupancy Fraction in Regular Graphs , 2017, Comb. Probab. Comput..

[29]  Yufei Zhao Extremal Regular Graphs: Independent Sets and Graph Homomorphisms , 2016, Am. Math. Mon..

[30]  Will Perkins,et al.  Independent sets, matchings, and occupancy fractions , 2015, J. Lond. Math. Soc..

[31]  Péter Csikvári,et al.  Sidorenko's Conjecture, Colorings and Independent Sets , 2017, Electron. J. Comb..

[32]  Will Perkins,et al.  Counting independent sets in cubic graphs of given girth , 2018, J. Comb. Theory, Ser. B.