Extremes of the internal energy of the Potts model on cubic graphs
暂无分享,去创建一个
Will Perkins | Barnaby Roberts | Matthew Jenssen | Ewan Davies | B. Roberts | Ewan Davies | Matthew Jenssen | Will Perkins
[1] E. Ising. Beitrag zur Theorie des Ferromagnetismus , 1925 .
[2] R. B. Potts. Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] F. Y. Wu. The Potts model , 1982 .
[4] Nathan Linial,et al. Legal coloring of graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[5] Felix Lazebnik. On the greatest number of 2 and 3 colorings of a (v, e)-graph , 1989, J. Graph Theory.
[6] Felix Lazebnik,et al. New upper bounds for the greatest number of proper colorings of a (V, E)-graph , 1990, J. Graph Theory.
[7] S. Kak. Information, physics, and computation , 1996 .
[8] D. Welsh,et al. The Potts model and the Tutte polynomial , 2000 .
[9] Prasad Tetali,et al. On Weighted Graph Homomorphisms , 2001, Graphs, Morphisms and Statistical Physics.
[10] Jeff Kahn,et al. An Entropy Approach to the Hard-Core Model on Bipartite Graphs , 2001, Combinatorics, Probability and Computing.
[11] V. Akila,et al. Information , 2001, The Lancet.
[12] Alan D. Sokal,et al. Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions , 1999, Combinatorics, Probability and Computing.
[13] Alan D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.
[14] A. D. Forbes,et al. On independent sets , 2005 .
[15] David J. Galvin. Bounding the Partition Function of Spin-Systems , 2006, Electron. J. Comb..
[16] Felix Lazebnik,et al. Maximum number of colorings of (2k, k2)‐graphs , 2007, J. Graph Theory.
[17] F. Lazebnik,et al. Maximum number of colorings of (2k, k 2 )-graphs , 2007 .
[18] I. Shparlinski,et al. Pseudoprime reductions of elliptic curves , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] O. Pikhurko,et al. Maximizing the number of q‐colorings , 2008, 0811.2625.
[20] Yufei Zhao,et al. The Bipartite Swapping Trick on Graph Homomorphisms , 2011, SIAM J. Discret. Math..
[21] Nicholas Ruozzi,et al. The Bethe Partition Function of Log-supermodular Graphical Models , 2012, NIPS.
[22] David Galvin,et al. Maximizing H‐Colorings of a Regular Graph , 2011, J. Graph Theory.
[23] Nicholas Ruozzi,et al. Beyond Log-Supermodularity: Lower Bounds and the Bethe Partition Function , 2013, UAI.
[24] O. Parczyk,et al. On Sidorenko's Conjecture , 2014 .
[25] David Galvin. Counting Colorings of a Regular Graph , 2015, Graphs Comb..
[26] P'eter Csikv'ari. Extremal regular graphs: the case of the infinite regular tree , 2016, 1612.01295.
[27] B. Roberts,et al. On the average size of independent sets in triangle-free graphs , 2016, 1606.01043.
[28] Will Perkins,et al. On the Widom-Rowlinson Occupancy Fraction in Regular Graphs , 2017, Comb. Probab. Comput..
[29] Yufei Zhao. Extremal Regular Graphs: Independent Sets and Graph Homomorphisms , 2016, Am. Math. Mon..
[30] Will Perkins,et al. Independent sets, matchings, and occupancy fractions , 2015, J. Lond. Math. Soc..
[31] Péter Csikvári,et al. Sidorenko's Conjecture, Colorings and Independent Sets , 2017, Electron. J. Comb..
[32] Will Perkins,et al. Counting independent sets in cubic graphs of given girth , 2018, J. Comb. Theory, Ser. B.