Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts

[1]  M. D. Amiridis,et al.  Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decomposition to N2. , 2005, The journal of physical chemistry. B.

[2]  U. Ozkan,et al.  Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts , 2004 .

[3]  R. Schlögl,et al.  Activity and Selectivity of a Nanostructured CuO/ZrO2 Catalyst in the Steam Reforming of Methanol , 2004 .

[4]  Rufino M. Navarro,et al.  Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3 , 2003 .

[5]  J. Fierro,et al.  Production of hydrogen from methanol over binary Cu/ZnO catalysts - Part II. Catalytic activity and reaction pathways , 2003 .

[6]  Chunshan Song,et al.  Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells , 2002 .

[7]  Alice Dohnalkova,et al.  Steam Reforming of Methanol Over Highly Active Pd/ZnO Catalyst. , 2002 .

[8]  P. G. Menon,et al.  Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles , 2002 .

[9]  Henrik Birgersson,et al.  Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst : a kinetic analysis and strategies for suppression of CO formation , 2002 .

[10]  A. Bell,et al.  Effects of Zirconia Phase on the Synthesis of Methanol over Zirconia-Supported Copper , 2002 .

[11]  T. Ressler,et al.  Redox Behavior of Copper Oxide /Zinc Oxide Catalysts in the Steam Reforming of Methanol studied by in situ X-ray Diffraction and Absorption Spectroscopy , 2001 .

[12]  Kenzi Suzuki,et al.  Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation , 2000 .

[13]  Kenzi Suzuki,et al.  Effect of Sn Incorporation on the Thermal Transformation and Reducibility of M(II)Al-Layered Double Hydroxides [M(II) = Ni or Co] , 2000 .

[14]  Julian R.H. Ross,et al.  Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts , 1999 .

[15]  A. Bell,et al.  A mechanistic study of methanol decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2 , 1999 .

[16]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network , 1999 .

[17]  Márcio Nele,et al.  Composition effects on the activity of Cu–ZnO–Al2O3 based catalysts for the water gas shift reaction: A statistical approach , 1998 .

[18]  Qi Sun,et al.  A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation , 1998 .

[19]  I. Metcalfe,et al.  Methanol Synthesis from CO/CO2/H2over Cu/ZnO/Al2O3at Differential and Finite Conversions , 1998 .

[20]  A. Bell,et al.  In Situ Infrared Study of Methanol Synthesis from H2/CO over Cu/SiO2and Cu/ZrO2/SiO2 , 1997 .

[21]  W. Dow,et al.  Yttria-stabilized zirconia supported copper oxide catalyst. I. Effect of oxygen vacancy of support on copper oxide reduction , 1996 .

[22]  M. Laborde,et al.  Activity and structure-sensitivity of the water-gas shift reaction over CuZnAl mixed oxide catalysts , 1995 .

[23]  A. Wokaun,et al.  Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide , 1992 .

[24]  J. Mol,et al.  Support effects in methanol synthesis over copper-containing catalysts , 1991 .

[25]  T. Asakawa,et al.  Steam reforming of methanol over Cu/ZrO2. Role of ZrO2 support , 1987 .