Lévy flights: Exact results and asymptotics beyond all orders

A comprehensive study of the symmetric Levy stable probability density function is presented. This is performed for orders both less than 2, and greater than 2. The latter class of functions are traditionally neglected because of a failure to satisfy non-negativity. The complete asymptotic expansions of the symmetric Levy stable densities of order greater than 2 are constructed, and shown to exhibit intricate series of transcendentally small terms—asymptotics beyond all orders. It is demonstrated that the symmetric Levy stable densities of any arbitrary rational order can be written in terms of generalized hypergeometric functions, and a number of new special cases are given representations in terms of special functions. A link is shown between the symmetric Levy stable density of order 4, and Pearcey’s integral, which is used widely in problems of optical diffraction and wave propagation. This suggests the existence of applications for the symmetric Levy stable densities of order greater than 2, despite their failure to define a probability density function.

[1]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[2]  M. Shlesinger,et al.  Beyond Brownian motion , 1996 .

[3]  V. Zolotarev One-dimensional stable distributions , 1986 .

[4]  R. Feynman Simulating physics with computers , 1999 .

[5]  Jean-Pierre Vigier,et al.  A review of extended probabilities , 1986 .

[6]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[7]  J. Bouchaud,et al.  Theory of financial risks : from statistical physics to risk management , 2000 .

[8]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[9]  M. .. Moore Studies in Statistical Mechanics Vol VII – Fluctuation Phenomena , 1980 .

[10]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[11]  Frankel,et al.  Stochastic dynamics of relativistic turbulence. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[13]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[14]  G. Zaslavsky From Lévy flights to the fractional kinetic equation for dynamical chaos , 1995 .

[15]  D. Kaminski Asymptotic expansion of the pearcey integral near the caustic , 1989 .

[16]  R. G. Laha Review: V. M. Zolotarev, One-dimensional stable distributions , 1989 .

[17]  R. Paris The asymptotic behaviour of Pearcey’s integral for complex variables , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[19]  R. Mantegna,et al.  An Introduction to Econophysics: Contents , 1999 .

[20]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[21]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[22]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[23]  A. Zeilinger,et al.  Quantum implications : essays in honour of David Bohm , 1988 .

[24]  Harvey Segur,et al.  Asymptotics beyond all orders , 1987 .

[25]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[26]  M. Glasser,et al.  Complete asymptotic expansions of the Fermi–Dirac integrals Fp(η)=1/Γ(p+1)∫0∞[εp/(1+eε−η)]dε , 2001 .

[27]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[28]  B. Gnedenko,et al.  Limit distributions for sums of shrunken random variables , 1954 .

[29]  V. Kowalenko,et al.  Generalised Euler-Jacobi Inversion Formula and Asymptotics Beyond All Orders , 1995 .

[30]  R. Dingle Asymptotic expansions : their derivation and interpretation , 1975 .

[31]  S. Albeverio,et al.  Stochastic Processes in Classical and Quantum Systems , 1986 .

[32]  E. Montroll,et al.  CHAPTER 2 – On an Enriched Collection of Stochastic Processes* , 1979 .

[33]  R. V. Churchill,et al.  Lectures on Fourier Integrals , 1959 .

[34]  Elliott W. Montroll,et al.  Nonequilibrium phenomena. II - From stochastics to hydrodynamics , 1984 .

[35]  S. Bochner Lectures on Fourier Integrals. (AM-42) , 1959 .

[36]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[37]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[38]  B. Mandelbrot,et al.  Fractals: Form, Chance and Dimension , 1978 .