Lévy flights: Exact results and asymptotics beyond all orders
暂无分享,去创建一个
[1] J. Bouchaud,et al. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .
[2] M. Shlesinger,et al. Beyond Brownian motion , 1996 .
[3] V. Zolotarev. One-dimensional stable distributions , 1986 .
[4] R. Feynman. Simulating physics with computers , 1999 .
[5] Jean-Pierre Vigier,et al. A review of extended probabilities , 1986 .
[6] E. Montroll,et al. Anomalous transit-time dispersion in amorphous solids , 1975 .
[7] J. Bouchaud,et al. Theory of financial risks : from statistical physics to risk management , 2000 .
[8] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[9] M. .. Moore. Studies in Statistical Mechanics Vol VII – Fluctuation Phenomena , 1980 .
[10] C. W. Clenshaw,et al. The special functions and their approximations , 1972 .
[11] Frankel,et al. Stochastic dynamics of relativistic turbulence. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[12] G. A. Watson. A treatise on the theory of Bessel functions , 1944 .
[13] Rosario N. Mantegna,et al. Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .
[14] G. Zaslavsky. From Lévy flights to the fractional kinetic equation for dynamical chaos , 1995 .
[15] D. Kaminski. Asymptotic expansion of the pearcey integral near the caustic , 1989 .
[16] R. G. Laha. Review: V. M. Zolotarev, One-dimensional stable distributions , 1989 .
[17] R. Paris. The asymptotic behaviour of Pearcey’s integral for complex variables , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[18] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[19] R. Mantegna,et al. An Introduction to Econophysics: Contents , 1999 .
[20] S. Chandrasekhar. Stochastic problems in Physics and Astronomy , 1943 .
[21] Benoit B. Mandelbrot,et al. Fractals and Scaling in Finance , 1997 .
[22] Bruce J. West,et al. Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.
[23] A. Zeilinger,et al. Quantum implications : essays in honour of David Bohm , 1988 .
[24] Harvey Segur,et al. Asymptotics beyond all orders , 1987 .
[25] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[26] M. Glasser,et al. Complete asymptotic expansions of the Fermi–Dirac integrals Fp(η)=1/Γ(p+1)∫0∞[εp/(1+eε−η)]dε , 2001 .
[27] B. Gnedenko,et al. Limit Distributions for Sums of Independent Random Variables , 1955 .
[28] B. Gnedenko,et al. Limit distributions for sums of shrunken random variables , 1954 .
[29] V. Kowalenko,et al. Generalised Euler-Jacobi Inversion Formula and Asymptotics Beyond All Orders , 1995 .
[30] R. Dingle. Asymptotic expansions : their derivation and interpretation , 1975 .
[31] S. Albeverio,et al. Stochastic Processes in Classical and Quantum Systems , 1986 .
[32] E. Montroll,et al. CHAPTER 2 – On an Enriched Collection of Stochastic Processes* , 1979 .
[33] R. V. Churchill,et al. Lectures on Fourier Integrals , 1959 .
[34] Elliott W. Montroll,et al. Nonequilibrium phenomena. II - From stochastics to hydrodynamics , 1984 .
[35] S. Bochner. Lectures on Fourier Integrals. (AM-42) , 1959 .
[36] G. Pólya,et al. Problems and theorems in analysis , 1983 .
[37] P. A. Prince,et al. Lévy flight search patterns of wandering albatrosses , 1996, Nature.
[38] B. Mandelbrot,et al. Fractals: Form, Chance and Dimension , 1978 .