Hunting Redundancies in Strings

The notion of redundancies in texts, regarded as sequences of symbols, appear under various concepts in the literature of Combinatorics on words and of Algorithms on strings: repetitions, repeats, runs, covers, seeds, and palindromes, for example. We explore some of the newest aspects of these redundancies.

[1]  Maxime Crochemore,et al.  Efficient Computing of Longest Previous Reverse Factors , 2009 .

[2]  Maxime Crochemore,et al.  Number of Occurrences of powers in Strings , 2010, Int. J. Found. Comput. Sci..

[3]  Wojciech Rytter,et al.  Efficient Algorithms for Two Extensions of LPF Table: The Power of Suffix Arrays , 2010, SOFSEM.

[4]  Michaël Rao,et al.  Last cases of Dejean's conjecture , 2011, Theor. Comput. Sci..

[5]  Max Crochemore,et al.  Seventh International Conference on Computer Science and Information Technologies (CSIT 2009) , 2009 .

[6]  Franco P. Preparata,et al.  Optimal Off-Line Detection of Repetitions in a String , 1983, Theor. Comput. Sci..

[7]  Hans-Joachim Böckenhauer,et al.  Algorithmic Aspects of Bioinformatics (Natural Computing Series) , 2007 .

[8]  A. Nijenhuis Combinatorial algorithms , 1975 .

[9]  Ian H. Witten,et al.  Text Compression , 1990, 125 Problems in Text Algorithms.

[10]  Lucian Ilie,et al.  A note on the number of squares in a word , 2007, Theor. Comput. Sci..

[11]  Jens Stoye,et al.  Linear time algorithms for finding and representing all the tandem repeats in a string , 2004, J. Comput. Syst. Sci..

[12]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[13]  Lucian Ilie,et al.  Analysis of Maximal Repetitions in Strings , 2007, MFCS.

[14]  Gregory Kucherov,et al.  Searching for Gapped Palindromes , 2008, CPM.

[15]  Patrice Séébold Sur les morphismes qui engendrent des mots infinis ayant des facteurs prescrits , 1983 .

[16]  Golnaz Badkobeh,et al.  Fewest repetitions versus maximal-exponent powers in infinite binary words , 2011, Theor. Comput. Sci..

[17]  Maxime Crochemore,et al.  An Optimal Algorithm for Computing the Repetitions in a Word , 1981, Inf. Process. Lett..

[18]  Costas S. Iliopoulos,et al.  Proceedings of the Prague Stringology Conference '03 , 2003 .

[19]  Tero Harju,et al.  Binary Words with Few Squares , 2006, Bull. EATCS.

[20]  William F. Smyth,et al.  How many runs can a string contain? , 2008, Theor. Comput. Sci..

[21]  Costas S. Iliopoulos,et al.  A Characterization of the Squares in a Fibonacci String , 1997, Theor. Comput. Sci..

[22]  Aviezri S. Fraenkel,et al.  How Many Squares Must a Binary Sequence Contain? , 1997, Electron. J. Comb..

[23]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[24]  Hideo Bannai,et al.  New Lower Bounds for the Maximum Number of Runs in a String , 2008, Stringology.

[25]  Lucian Ilie,et al.  Computing Longest Previous Factor in linear time and applications , 2008, Inf. Process. Lett..

[26]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[27]  M. Crochemore,et al.  Algorithms on Strings: Tools , 2007 .

[28]  Françoise Dejean,et al.  Sur un Théorème de Thue , 1972, J. Comb. Theory A.

[29]  Aviezri S. Fraenkel,et al.  How Many Squares Can a String Contain? , 1998, J. Comb. Theory, Ser. A.

[30]  Gang Chen,et al.  Fast and Practical Algorithms for Computing All the Runs in a String , 2007, CPM.

[31]  Hans-Joachim Böckenhauer,et al.  Algorithmic aspects of bioinformatics , 2007 .

[32]  Manish S. Shah,et al.  A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes , 1993, Cell.

[33]  Wojciech Rytter,et al.  The number of runs in a string , 2007, Inf. Comput..

[34]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[35]  Jeffrey Shallit,et al.  Avoiding large squares in infinite binary words , 2003, Theor. Comput. Sci..

[36]  Maxime Crochemore,et al.  Bounded Number of Squares in Infinite Repetition-Constrained Binary Words , 2010, Stringology.

[37]  Lucian Ilie,et al.  The "runs" conjecture , 2011, Theor. Comput. Sci..

[38]  Qian Yang,et al.  An asymptotic lower bound for the maximal-number-of-runs function , 2006, Stringology.

[39]  Jean-Jacques Pansiot,et al.  The Morse Sequence and Iterated Morphisms , 1981, Inf. Process. Lett..

[40]  Jeffrey Shallit,et al.  Simultaneous Avoidance Of Large Squares And Fractional Powers In Infinite Binary Words , 2003, Int. J. Found. Comput. Sci..

[41]  Bernhard Rumpe,et al.  SOFSEM 2010: Theory and Practice of Computer Science, 36th Conference on Current Trends in Theory and Practice of Computer Science, Spindleruv Mlýn, Czech Republic, January 23-29, 2010. Proceedings , 2010, SOFSEM.

[42]  Gregory Kucherov,et al.  Finding maximal repetitions in a word in linear time , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[43]  Pascal Ochem,et al.  A generator of morphisms for infinite words , 2006, RAIRO Theor. Informatics Appl..

[44]  F. Michel Dekking,et al.  On Repetitions of Blocks in Binary Sequences , 1976, J. Comb. Theory, Ser. A.

[45]  Lucian Ilie,et al.  Maximal repetitions in strings , 2008, J. Comput. Syst. Sci..

[46]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[47]  Jamie Simpson Modified Padovan words and the maximum number of runs in a word , 2010, Australas. J Comb..

[48]  Lucian Ilie,et al.  A simple proof that a word of length n has at most 2n distinct squares , 2005, J. Comb. Theory A.

[49]  Michael G. Main,et al.  An O(n log n) Algorithm for Finding All Repetitions in a String , 1984, J. Algorithms.

[50]  Jeffrey Shallit,et al.  Polynomial versus exponential growth in repetition-free binary words , 2003, J. Comb. Theory A.

[51]  Wojciech Rytter,et al.  The Number of Runs in a String: Improved Analysis of the Linear Upper Bound , 2006, STACS.

[52]  Wojciech Rytter,et al.  LPF Computation Revisited , 2009, IWOCA.

[53]  Ian H. Witten,et al.  Managing gigabytes , 1994 .

[54]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[55]  Alberto Apostolico,et al.  Of Periods, Quasiperiods, Repetitions and Covers , 1997, Structures in Logic and Computer Science.

[56]  Mathieu Giraud,et al.  Not So Many Runs in Strings , 2008, LATA.

[57]  Lucian Ilie,et al.  A Simple Algorithm for Computing the Lempel Ziv Factorization , 2008, Data Compression Conference (dcc 2008).

[58]  Maxime Crochemore,et al.  Transducers and Repetitions , 1986, Theor. Comput. Sci..

[59]  Maxime Crochemore,et al.  Finding Patterns In Given Intervals , 2007, Fundam. Informaticae.

[60]  Wojciech Rytter,et al.  Squares, cubes, and time-space efficient string searching , 1995, Algorithmica.

[61]  Michael G. Main,et al.  Detecting leftmost maximal periodicities , 1989, Discret. Appl. Math..

[62]  Frantisek Franek,et al.  Computing all Repeats Using Suffix Arrays , 2003, J. Autom. Lang. Comb..