Hunting Redundancies in Strings
暂无分享,去创建一个
Maxime Crochemore | Supaporn Chairungsee | Golnaz Badkobeh | M. Crochemore | Golnaz Badkobeh | Supaporn Chairungsee
[1] Maxime Crochemore,et al. Efficient Computing of Longest Previous Reverse Factors , 2009 .
[2] Maxime Crochemore,et al. Number of Occurrences of powers in Strings , 2010, Int. J. Found. Comput. Sci..
[3] Wojciech Rytter,et al. Efficient Algorithms for Two Extensions of LPF Table: The Power of Suffix Arrays , 2010, SOFSEM.
[4] Michaël Rao,et al. Last cases of Dejean's conjecture , 2011, Theor. Comput. Sci..
[5] Max Crochemore,et al. Seventh International Conference on Computer Science and Information Technologies (CSIT 2009) , 2009 .
[6] Franco P. Preparata,et al. Optimal Off-Line Detection of Repetitions in a String , 1983, Theor. Comput. Sci..
[7] Hans-Joachim Böckenhauer,et al. Algorithmic Aspects of Bioinformatics (Natural Computing Series) , 2007 .
[8] A. Nijenhuis. Combinatorial algorithms , 1975 .
[9] Ian H. Witten,et al. Text Compression , 1990, 125 Problems in Text Algorithms.
[10] Lucian Ilie,et al. A note on the number of squares in a word , 2007, Theor. Comput. Sci..
[11] Jens Stoye,et al. Linear time algorithms for finding and representing all the tandem repeats in a string , 2004, J. Comput. Syst. Sci..
[12] M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .
[13] Lucian Ilie,et al. Analysis of Maximal Repetitions in Strings , 2007, MFCS.
[14] Gregory Kucherov,et al. Searching for Gapped Palindromes , 2008, CPM.
[15] Patrice Séébold. Sur les morphismes qui engendrent des mots infinis ayant des facteurs prescrits , 1983 .
[16] Golnaz Badkobeh,et al. Fewest repetitions versus maximal-exponent powers in infinite binary words , 2011, Theor. Comput. Sci..
[17] Maxime Crochemore,et al. An Optimal Algorithm for Computing the Repetitions in a Word , 1981, Inf. Process. Lett..
[18] Costas S. Iliopoulos,et al. Proceedings of the Prague Stringology Conference '03 , 2003 .
[19] Tero Harju,et al. Binary Words with Few Squares , 2006, Bull. EATCS.
[20] William F. Smyth,et al. How many runs can a string contain? , 2008, Theor. Comput. Sci..
[21] Costas S. Iliopoulos,et al. A Characterization of the Squares in a Fibonacci String , 1997, Theor. Comput. Sci..
[22] Aviezri S. Fraenkel,et al. How Many Squares Must a Binary Sequence Contain? , 1997, Electron. J. Comb..
[23] M. Lothaire,et al. Applied Combinatorics on Words , 2005 .
[24] Hideo Bannai,et al. New Lower Bounds for the Maximum Number of Runs in a String , 2008, Stringology.
[25] Lucian Ilie,et al. Computing Longest Previous Factor in linear time and applications , 2008, Inf. Process. Lett..
[26] M. Lothaire. Combinatorics on words: Bibliography , 1997 .
[27] M. Crochemore,et al. Algorithms on Strings: Tools , 2007 .
[28] Françoise Dejean,et al. Sur un Théorème de Thue , 1972, J. Comb. Theory A.
[29] Aviezri S. Fraenkel,et al. How Many Squares Can a String Contain? , 1998, J. Comb. Theory, Ser. A.
[30] Gang Chen,et al. Fast and Practical Algorithms for Computing All the Runs in a String , 2007, CPM.
[31] Hans-Joachim Böckenhauer,et al. Algorithmic aspects of bioinformatics , 2007 .
[32] Manish S. Shah,et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes , 1993, Cell.
[33] Wojciech Rytter,et al. The number of runs in a string , 2007, Inf. Comput..
[34] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[35] Jeffrey Shallit,et al. Avoiding large squares in infinite binary words , 2003, Theor. Comput. Sci..
[36] Maxime Crochemore,et al. Bounded Number of Squares in Infinite Repetition-Constrained Binary Words , 2010, Stringology.
[37] Lucian Ilie,et al. The "runs" conjecture , 2011, Theor. Comput. Sci..
[38] Qian Yang,et al. An asymptotic lower bound for the maximal-number-of-runs function , 2006, Stringology.
[39] Jean-Jacques Pansiot,et al. The Morse Sequence and Iterated Morphisms , 1981, Inf. Process. Lett..
[40] Jeffrey Shallit,et al. Simultaneous Avoidance Of Large Squares And Fractional Powers In Infinite Binary Words , 2003, Int. J. Found. Comput. Sci..
[41] Bernhard Rumpe,et al. SOFSEM 2010: Theory and Practice of Computer Science, 36th Conference on Current Trends in Theory and Practice of Computer Science, Spindleruv Mlýn, Czech Republic, January 23-29, 2010. Proceedings , 2010, SOFSEM.
[42] Gregory Kucherov,et al. Finding maximal repetitions in a word in linear time , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[43] Pascal Ochem,et al. A generator of morphisms for infinite words , 2006, RAIRO Theor. Informatics Appl..
[44] F. Michel Dekking,et al. On Repetitions of Blocks in Binary Sequences , 1976, J. Comb. Theory, Ser. A.
[45] Lucian Ilie,et al. Maximal repetitions in strings , 2008, J. Comput. Syst. Sci..
[46] Maxime Crochemore,et al. Algorithms on strings , 2007 .
[47] Jamie Simpson. Modified Padovan words and the maximum number of runs in a word , 2010, Australas. J Comb..
[48] Lucian Ilie,et al. A simple proof that a word of length n has at most 2n distinct squares , 2005, J. Comb. Theory A.
[49] Michael G. Main,et al. An O(n log n) Algorithm for Finding All Repetitions in a String , 1984, J. Algorithms.
[50] Jeffrey Shallit,et al. Polynomial versus exponential growth in repetition-free binary words , 2003, J. Comb. Theory A.
[51] Wojciech Rytter,et al. The Number of Runs in a String: Improved Analysis of the Linear Upper Bound , 2006, STACS.
[52] Wojciech Rytter,et al. LPF Computation Revisited , 2009, IWOCA.
[53] Ian H. Witten,et al. Managing gigabytes , 1994 .
[54] Abraham Lempel,et al. A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.
[55] Alberto Apostolico,et al. Of Periods, Quasiperiods, Repetitions and Covers , 1997, Structures in Logic and Computer Science.
[56] Mathieu Giraud,et al. Not So Many Runs in Strings , 2008, LATA.
[57] Lucian Ilie,et al. A Simple Algorithm for Computing the Lempel Ziv Factorization , 2008, Data Compression Conference (dcc 2008).
[58] Maxime Crochemore,et al. Transducers and Repetitions , 1986, Theor. Comput. Sci..
[59] Maxime Crochemore,et al. Finding Patterns In Given Intervals , 2007, Fundam. Informaticae.
[60] Wojciech Rytter,et al. Squares, cubes, and time-space efficient string searching , 1995, Algorithmica.
[61] Michael G. Main,et al. Detecting leftmost maximal periodicities , 1989, Discret. Appl. Math..
[62] Frantisek Franek,et al. Computing all Repeats Using Suffix Arrays , 2003, J. Autom. Lang. Comb..