Spin-lasers: spintronics beyond magnetoresistance

Abstract Introducing spin-polarized carriers in semiconductor lasers reveals an alternative path to realize room-temperature spintronic applications, beyond the usual magnetoresistive effects. Through carrier recombination, the angular momentum of the spin-polarized carriers is transferred to photons, thus leading to the circularly polarized emitted light. The intuition for the operation of such spin-lasers can be obtained from simple bucket and harmonic oscillator models, elucidating their steady-state and dynamic response, respectively. These lasers extend the functionalities of spintronic devices and exceed the performance of conventional (spin-unpolarized) lasers, including an order of magnitude faster modulation frequency. Surprisingly, this ultrafast operation relies on a short carrier spin relaxation time and a large anisotropy of the refractive index, both viewed as detrimental in spintronics and conventional lasers. Spin-lasers provide a platform to test novel concepts in spin devices and offer progress connected to the advances in more traditional areas of spintronics.

[1]  Macroscopic versus microscopic description of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers , 2000, IEEE Journal of Quantum Electronics.

[2]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[3]  San Miguel M,et al.  Light-polarization dynamics in surface-emitting semiconductor lasers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  K. Ikeda,et al.  Lasing Polarization Characteristics in 1.55- $\mu \text{m}$ Spin-Injected VCSELs , 2017, IEEE Photonics Technology Letters.

[5]  Igor Žutić,et al.  New moves of the spintronics tango. , 2012, Nature materials.

[6]  Mehdi Alouini,et al.  Accurate measurement of the residual birefringence in VECSEL: Towards understanding of the polarization behavior under spin-polarized pumping. , 2015, Optics Express.

[7]  Mehdi Alouini,et al.  VSPIN: a new model relying on the vectorial description of the laser field for predicting the polarization dynamics of spin-injected V(e)CSELs. , 2018, Optics express.

[8]  Guy Holmes,et al.  The World’s Technological Capacity to Store, Compute and Communicate Information that has Already Been Created and Does not Need to be Done Again – 2012 , 2012 .

[9]  Kuhn,et al.  Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers. I. Theoretical formulation. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  R. Mallory,et al.  Analysis of the transport process providing spin injection through an Fe/AlGaAs Schottky barrier , 2003 .

[11]  Paulo E. Faria Junior,et al.  Wurtzite spin lasers , 2016, 1701.07793.

[12]  Nils C. Gerhardt,et al.  Spin-Controlled Vertical-Cavity Surface-Emitting Lasers , 2012 .

[13]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[14]  A. Yariv Optical electronics in modern communications , 1997 .

[15]  Alex Matos-Abiague,et al.  Magnetic Proximity Effects in Transition-Metal Dichalcogenides: Converting Excitons. , 2017, Physical review letters.

[16]  Wolfgang Stolz,et al.  Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons , 2005 .

[17]  Kazuhiro Ikeda,et al.  High-Speed Modulation of 1.55-µm VCSELs with Spin Polarization Modulation , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[18]  I. Žutić,et al.  What Makes Effective Gating Possible in Two-Dimensional Heterostructures? , 2015, 1510.05404.

[19]  Stephan W Koch,et al.  Physics of Optoelectronic Devices , 1995 .

[20]  L. Casperson,et al.  Gain and saturation in semiconductor lasers , 1993 .

[21]  Jeff Hecht,et al.  The bandwidth bottleneck that is throttling the Internet , 2016, Nature.

[22]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[23]  Weisheng Zhao,et al.  Two-dimensional spintronics for low-power electronics , 2019, Nature Electronics.

[24]  Zetian Mi,et al.  Electrically injected InAs∕GaAs quantum dot spin laser operating at 200K , 2008 .

[25]  S. Erwin,et al.  Bipolar spintronics: from spin injection to spin-controlled logic , 2007, 0706.2190.

[26]  Kazumasa Takahashi,et al.  Monte Carlo simulation of scattered circularly polarized light in biological tissues for detection technique of abnormal tissues using spin-polarized light emitting diodes , 2020, Japanese Journal of Applied Physics.

[27]  Henning Höpfner,et al.  Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers , 2011 .

[28]  Jeongsu Lee,et al.  Spin-lasers: From threshold reduction to large-signal analysis , 2014 .

[29]  G. Agrawal,et al.  Generalized Bloch-Maxwell formulation for semiconductor lasers , 1993 .

[30]  B. Jonker,et al.  Threshold current reduction in spin-polarized lasers: Role of strain and valence-band mixing , 2011 .

[31]  N. Jones How to stop data centres from gobbling up the world’s electricity , 2018, Nature.

[32]  S. Sarma,et al.  Spin electronics and spin computation , 2001, cond-mat/0105247.

[33]  Hiro Munekata Low-threshold pure-circular polarization electro-luminescence from spin-light-emitting diodes consisting of oxidized Al/AlAs tunnel barriers , 2020, OPTO.

[34]  E. Tsymbal,et al.  Spintronics Handbook: Spin Transport and Magnetism, Second Edition , 2019 .

[35]  Kazuhiro Ikeda,et al.  Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells , 2011 .

[36]  A. Matos-Abiague,et al.  Semiconductor Spintronics , 2007 .

[37]  Vittorio Degiorgio,et al.  Analogy between the Laser Threshold Region and a Second-Order Phase Transition , 1970 .

[38]  R. Oszwałdowski,et al.  Theory of quantum dot spin lasers , 2010, 1009.0324.

[39]  K. Nishibayashi,et al.  A spin light emitting diode incorporating ability of electrical helicity switching , 2014 .

[40]  Hanan Dery,et al.  Silicon spin communication , 2011 .

[41]  Dirk Reuter,et al.  Room temperature spin relaxation length in spin light-emitting diodes , 2011 .

[42]  W. W. Chow,et al.  Semiconductor-Laser Fundamentals: Physics of the Gain Materials , 1999 .

[43]  Igor Zutic,et al.  Analytical model of spin-polarized semiconductor lasers , 2008, 0806.4209.

[44]  Richard A. Webb,et al.  Coherent control of nanomagnet dynamics via ultrafast spin torque pulses , 2008, 0806.2297.

[45]  T. Raddo,et al.  Strain induced polarization chaos in a solitary VCSEL , 2017, Scientific Reports.

[46]  R. Winkler,et al.  Design considerations for semiconductor spin lasers , 2005 .

[47]  J.-M. George,et al.  Spin injection at remanence into III-V spin light-emitting diodes using (Co/Pt) ferromagnetic injectors , 2012 .

[48]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[49]  M. Oestreich,et al.  Laser threshold reduction in a spintronic device , 2003, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[50]  Determination of interface atomic structure and its impact on spin transport using Z-contrast microscopy and density-functional theory. , 2006, Physical review letters.

[51]  Dirk Reuter,et al.  Enhancement of spin information with vertical cavity surface emitting lasers , 2006 .

[52]  K. Petermann Laser Diode Modulation and Noise , 1988 .

[53]  Dirk Reuter,et al.  Room temperature electrical spin injection in remanence , 2008 .

[54]  Nils C. Gerhardt,et al.  Towards high-frequency operation of spin-lasers , 2015, 1508.04146.

[55]  Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature , 2017, Scientific Reports.

[56]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[57]  Kuhn,et al.  Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers. II. Spatiotemporal dynamics. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[58]  Hui Li,et al.  56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s , 2012 .

[59]  Jeongsu Lee,et al.  Tailoring chirp in spin-lasers , 2012, 1202.4706.

[60]  W. B. Thompson,et al.  What is light? , 2008, Discovering Light: Fun Experiments with Optics.

[61]  C. Dong,et al.  Self-polarized spin-nanolasers. , 2014, Nature nanotechnology.

[62]  P. Collot,et al.  Quantum Cascade Lasers , 1997, CLEO/Europe Conference on Lasers and Electro-Optics.

[63]  P. Bhattacharya,et al.  Optical polarization modulation and gain anisotropy in an electrically injected spin laser. , 2009, Physical review letters.

[64]  Spintronics : electron spin coherence , entanglement , and transport , 2000 .

[65]  Stephan W Koch,et al.  MANIFESTATION OF COHERENT SPIN PRECESSION IN STIMULATED SEMICONDUCTOR EMISSION DYNAMICS , 1997 .

[66]  Rainer Michalzik,et al.  Monolithic vertical-cavity surface-emitting laser with thermally tunable birefringence , 2017 .

[67]  Hitoshi Kawaguchi,et al.  Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection , 2009 .

[68]  H. Jaffrès,et al.  Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers , 2013 .

[69]  Rainer Michalzik,et al.  Frequency tuning of polarization oscillations: Toward high-speed spin-lasers , 2016 .

[70]  Md. Zunaid Baten,et al.  Room-Temperature Spin Polariton Diode Laser. , 2017, Physical review letters.

[71]  Igor Zutic,et al.  Bipolar spintronics: Fundamentals and applications , 2006, IBM J. Res. Dev..

[72]  Asawin Sinsarp,et al.  Electrical Spin Injection from Out-of-Plane Magnetized FePt/MgO Tunneling Junction into GaAs at Room Temperature , 2006 .

[73]  Dipankar Saha,et al.  Modulation bandwidth of a spin laser , 2011 .

[74]  Antonio Hurtado,et al.  Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser , 2015 .

[75]  Nils C. Gerhardt,et al.  Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices , 2010 .

[76]  James S. Harris,et al.  Temperature independence of the spin-injection efficiency of a MgO-based tunnel spin injector , 2005 .

[77]  P. Bhattacharya,et al.  Electrical spin injection and threshold reduction in a semiconductor laser. , 2007, Physical review letters.

[78]  C. Palmstrøm,et al.  Bias-controlled sensitivity of ferromagnet/semiconductor electrical spin detectors , 2008, 0809.1120.

[79]  Martin Hilbert,et al.  The World’s Technological Capacity to Store, Communicate, and Compute Information , 2011, Science.

[80]  S. Balle,et al.  Spatio-temporal modeling of the optical properties of VCSELs in the presence of polarization effects , 2002 .

[81]  Hugo Thienpont,et al.  Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers , 2000 .

[82]  Jaroslav Fabian,et al.  Spin injection and detection in silicon. , 2006, Physical review letters.

[83]  Jeongsu Lee,et al.  Digital operation and eye diagrams in spin-lasers , 2015 .

[84]  James A. Lott,et al.  35 GHz Bandwidth with Directly Current Modulated 980 nm Oxide Aperture Single Cavity VCSELs , 2018, 2018 IEEE International Semiconductor Laser Conference (ISLC).

[85]  Hiro Munekata,et al.  Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature , 2018 .

[86]  Spin injection through the depletion layer: A theory of spin-polarized p-n junctions and solar cells , 2001, cond-mat/0103473.

[87]  D J Hilton,et al.  Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs. , 2002, Physical review letters.

[88]  H. Munekata,et al.  Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes , 2016, Proceedings of the National Academy of Sciences.

[89]  M. Amthor,et al.  An electrically pumped polariton laser , 2013, Nature.

[90]  Rainer Michalzik,et al.  Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers , 2008 .

[91]  H. Dery,et al.  Tunable spin junction , 2009 .

[92]  Kazuhiro Ikeda,et al.  Spin polarization modulation for high-speed vertical-cavity surface-emitting lasers , 2018, Applied Physics Letters.

[93]  A. Khaetskii,et al.  Proposal for a phonon laser utilizing quantum-dot spin states. , 2013, Physical review letters.

[94]  Dipankar Saha,et al.  High-frequency dynamics of spin-polarized carriers and photons in a laser , 2010 .

[95]  Wei Huang,et al.  Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. , 2016, Nature nanotechnology.

[96]  R. Welser,et al.  Time resolved measurements of spin and carrier dynamics in InAs films , 2008 .

[97]  Henning Höpfner,et al.  Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers , 2014 .

[98]  Michael C. Parker Physics of Optoelectronics , 2005 .

[99]  S. Sarma,et al.  Spintronics: electron spin coherence, entanglement, and transport , 1999, cond-mat/9912040.

[100]  Kamil Postava,et al.  Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism , 2017 .

[101]  Sheng-Di Lin,et al.  Spin-polarized lasing in a highly photoexcited semiconductor microcavity , 2015, 1502.00037.

[102]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[103]  T. Ackemann,et al.  Polarization switching to the gain disfavored mode in vertical-cavity surface-emitting lasers , 2004, IEEE Journal of Quantum Electronics.

[104]  I. Žutić,et al.  Intensity equations for birefringent spin lasers , 2020, 2011.01486.

[105]  I. Žutić,et al.  Effective gating and tunable magnetic proximity effects in two-dimensional heterostructures , 2016 .

[106]  F. Junior,et al.  Development and application of the k.p method to investigate spin and optical properties of semiconductor nanostructures , 2016 .

[107]  B. Jonker,et al.  Response to “Comment on ‘Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor’ ” [Appl. Phys. Lett. 81, 2130 (2002)] , 2002 .

[108]  I. Žutić,et al.  Proximitized materials , 2018, Materials Today.

[109]  Hideki Gotoh,et al.  Photon-spin controlled lasing oscillation in surface-emitting lasers , 1998 .

[110]  Simranjeet Singh,et al.  Spin inversion in graphene spin valves by gate-tunable magnetic proximity effect at one-dimensional contacts , 2018, Nature Communications.

[111]  Jeongsu Lee,et al.  Spin modulation in semiconductor lasers , 2010, 1004.0719.

[112]  H. Ohno,et al.  Semiconductor spintronics , 2002 .

[113]  J. P. Woerdman,et al.  ELECTRO-OPTIC EFFECT AND BIREFRINGENCE IN SEMICONDUCTOR VERTICAL-CAVITY LASERS , 1997 .

[114]  Hartmut Haug,et al.  Exciton-polariton Bose-Einstein condensation , 2010 .

[115]  Andrew G. Glen,et al.  APPL , 2001 .

[116]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[117]  Jeongsu Lee,et al.  Mapping between quantum dot and quantum well lasers: From conventional to spin lasers , 2012, 1201.1644.

[118]  Jerome V Moloney,et al.  Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers , 2000 .

[119]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[120]  R. Michalzik,et al.  Vertical‐cavity surface‐emitting laser with integrated surface grating for high birefringence splitting , 2019, Electronics Letters.

[121]  Amnon Yariv,et al.  Optical Electronics in Modern Communications Fifth Edition , 2012 .

[122]  T. Katayama,et al.  Switching of Lasing Circular Polarizations in a (110)-VCSEL , 2009, IEEE Photonics Technology Letters.

[123]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[124]  V. Degiorgio The laser instability , 1976 .

[125]  Rainer Michalzik,et al.  Vertical-cavity surface-emitting lasers with birefringence splitting above 250 GHz , 2015 .

[126]  Hugo Thienpont,et al.  Deterministic polarization chaos from a laser diode , 2013 .

[127]  M. J. Adams,et al.  Instabilities in Spin-Polarized Vertical-Cavity Surface-Emitting Lasers , 2011, IEEE Photonics Journal.

[128]  R. Pisarev,et al.  Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses , 2005, Nature.

[129]  G Khitrova,et al.  Ultrafast polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers. , 2001, Optics Express.

[130]  David A. B. Miller Attojoule Optoelectronics for Low-Energy Information Processing and Communications , 2017, Journal of Lightwave Technology.

[131]  An electrically pumped polariton laser , 2013, CLEO 2013.

[132]  Jaroslav Fabian,et al.  Spin-polarized transport in inhomogeneous magnetic semiconductors: theory of magnetic/nonmagnetic p-n junctions. , 2002, Physical review letters.

[133]  S. Maekawa,et al.  Spin-dependent transport in magnetic nanostructures , 2002, cond-mat/0307050.

[134]  Hermann Haken,et al.  Laser light dynamics , 1985 .

[135]  Rainer Michalzik,et al.  Ultrafast spin-lasers , 2018, Nature.