Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies.

During tumor evolution, cancer cells can accumulate numerous genetic alterations, ranging from single nucleotide mutations to whole-chromosomal changes. Although a great deal of progress has been made in the past decades in characterizing genomic alterations, recent cancer genome sequencing studies have provided a wealth of information on the detailed molecular profiles of such alterations in various types of cancers. Here, we review our current understanding of the mechanisms and consequences of cancer genome instability, focusing on the findings uncovered through analysis of exome and whole-genome sequencing data. These analyses have shown that most cancers have evidence of genome instability, and the degree of instability is variable within and between cancer types. Importantly, we describe some recent evidence supporting the idea that chromosomal instability could be a major driving force in tumorigenesis and cancer evolution, actively shaping the genomes of cancer cells to maximize their survival advantage.

[1]  David Pellman,et al.  Causes and consequences of aneuploidy in cancer , 2012, Nature Reviews Genetics.

[2]  T. Lange Telomere-related genome instability in cancer. , 2005 .

[3]  P. Park,et al.  A genome-wide view of microsatellite instability: old stories of cancer mutations revisited with new sequencing technologies. , 2014, Cancer research.

[4]  Neil J Ganem,et al.  DNA breaks and chromosome pulverization from errors in mitosis , 2012, Nature.

[5]  D. Cleveland,et al.  Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis , 2009, Nature Reviews Molecular Cell Biology.

[6]  Wing-Kin Sung,et al.  ChIA-PET analysis of transcriptional chromatin interactions. , 2012, Methods.

[7]  Maitreya J. Dunham,et al.  Effects of Aneuploidy on Cellular Physiology and Cell Division in Haploid Yeast , 2007, Science.

[8]  M. Meyerson,et al.  Recurrent Hemizygous Deletions in Cancers May Optimize Proliferative Potential , 2012, Science.

[9]  Angelika Amon,et al.  Aneuploidy Affects Proliferation and Spontaneous Immortalization in Mammalian Cells , 2008, Science.

[10]  Andrew F. Neuwald,et al.  Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons , 2010, Cell.

[11]  N. A. Temiz,et al.  APOBEC3B is an enzymatic source of mutation in breast cancer , 2013, Nature.

[12]  Phillip A. Richmond,et al.  Polyploidy can drive rapid adaptation in yeast , 2015, Nature.

[13]  Peter Donnelly,et al.  Germline mutations in the proof-reading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas , 2012, Nature Genetics.

[14]  Seungbok Lee,et al.  A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. , 2012, Genome research.

[15]  Stephen S. Taylor,et al.  Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. , 2008, Cancer cell.

[16]  D. Largaespada,et al.  Extensive somatic L1 retrotransposition in colorectal tumors , 2012, Genome research.

[17]  L. Chin,et al.  Telomere dysfunction provokes regional amplification and deletion in cancer genomes. , 2002, Cancer cell.

[18]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of gastric adenocarcinoma , 2014, Nature.

[19]  Chris Sander,et al.  Emerging landscape of oncogenic signatures across human cancers , 2013, Nature Genetics.

[20]  George Iliakis,et al.  Break-Induced Replication Repair of Damaged Forks Induces Genomic Duplications in Human Cells , 2014, Science.

[21]  M. Bjørås,et al.  Base excision repair. , 2013, Cold Spring Harbor perspectives in biology.

[22]  S. Gollin,et al.  Spindle Multipolarity Is Prevented by Centrosomal Clustering , 2005, Science.

[23]  J. Herman,et al.  Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  L. Staudt,et al.  Identification of Early Replicating Fragile Sites that Contribute to Genome Instability , 2013, Cell.

[25]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[26]  R. Mahmood,et al.  Colonic tumorigenesis in BubR1+/-ApcMin/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Theodor Boveri Zur Frage der Entstehung maligner Tumoren , 1914 .

[28]  Mark D. Johnson,et al.  Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes , 2013, Genome research.

[29]  Darryl Shibata,et al.  Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis , 1993, Nature.

[30]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[31]  Maitreya J. Dunham,et al.  Identification of Aneuploidy-Tolerating Mutations , 2010, Cell.

[32]  Ben Lehner,et al.  Differential DNA mismatch repair underlies mutation rate variation across the human genome , 2015, Nature.

[33]  W F Bodmer,et al.  The mutation rate and cancer. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Dimitris Kletsas,et al.  Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions , 2005, Nature.

[35]  S Srivastava,et al.  A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. , 1998, Cancer research.

[36]  David Pellman,et al.  Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells , 2005, Nature.

[37]  S. Henderson,et al.  APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. , 2014, Cell reports.

[38]  David Pellman,et al.  A Mechanism Linking Extra Centrosomes to Chromosomal Instability , 2009, Nature.

[39]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[40]  K. Chin,et al.  In situ analyses of genome instability in breast cancer , 2004, Nature Genetics.

[41]  T. Halazonetis,et al.  Genomic instability — an evolving hallmark of cancer , 2010, Nature Reviews Molecular Cell Biology.

[42]  D. Baker,et al.  Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis , 2007, The Journal of cell biology.

[43]  D. Baker,et al.  Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation , 2003, The Journal of cell biology.

[44]  A. Sparks,et al.  The mutation spectrum revealed by paired genome sequences from a lung cancer patient , 2010, Nature.

[45]  Mark J. Ratain,et al.  Tumour heterogeneity in the clinic , 2013, Nature.

[46]  I. Tomlinson,et al.  Replicative DNA polymerase mutations in cancer☆ , 2014, Current opinion in genetics & development.

[47]  T. Ørntoft,et al.  Mutational context and diverse clonal development in early and late bladder cancer. , 2014, Cell reports.

[48]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[49]  Shigenori Iwai,et al.  Nucleosomal structure of undamaged DNA regions suppresses the non-specific DNA binding of the XPC complex. , 2005, DNA repair.

[50]  J. Dekker,et al.  Hi-C: a comprehensive technique to capture the conformation of genomes. , 2012, Methods.

[51]  Iscn International System for Human Cytogenetic Nomenclature , 1978 .

[52]  Richard Svensson,et al.  MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool , 2014, Nature.

[53]  J. Julian Blow,et al.  Live-Cell Imaging Reveals Replication of Individual Replicons in Eukaryotic Replication Factories , 2006, Cell.

[54]  Peter J. Park,et al.  The Landscape of Microsatellite Instability in Colorectal and Endometrial Cancer Genomes , 2013, Cell.

[55]  Rebecca C Fitzgerald,et al.  Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis , 2014, Nature Genetics.

[56]  N. Dumaz,et al.  Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Chapelle,et al.  Polymerase δ variants in RER colorectal tumours , 1995, Nature Genetics.

[58]  Wei Lu,et al.  A common deletion in the APOBEC3 genes and breast cancer risk. , 2013, Journal of the National Cancer Institute.

[59]  P. Nowell,et al.  Chromosome studies on normal and leukemic human leukocytes. , 1960, Journal of the National Cancer Institute.

[60]  Thomas M. Keane,et al.  The mutational landscapes of genetic and chemical models of Kras-driven lung cancer , 2014, Nature.

[61]  Wouter de Laat,et al.  Genome organization influences partner selection for chromosomal rearrangements. , 2011, Trends in genetics : TIG.

[62]  R. Kuick,et al.  Genetic p53 deficiency partially rescues the adrenocortical dysplasia phenotype at the expense of increased tumorigenesis. , 2009, Cancer cell.

[63]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[64]  H. Aburatani,et al.  Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer , 2007, Nature.

[65]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[66]  L. Loeb,et al.  Do mutator mutations fuel tumorigenesis? , 2013, Cancer and Metastasis Reviews.

[67]  Philip M. Kim,et al.  Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome , 2007, Science.

[68]  Grant W. Brown,et al.  Haploinsufficiency of an RB-E2F1-Condensin II complex leads to aberrant replication and aneuploidy. , 2014, Cancer discovery.

[69]  T. Kunkel,et al.  Division of labor at the eukaryotic replication fork. , 2008, Molecular cell.

[70]  Samuel F. Bakhoum,et al.  Genome stability is ensured by temporal control of kinetochore-microtubule dynamics , 2008, Nature Cell Biology.

[71]  J. Lupski,et al.  Mechanisms of change in gene copy number , 2009, Nature Reviews Genetics.

[72]  J. Guillem,et al.  Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. , 1997, Clinical cancer research : an official journal of the American Association for Cancer Research.

[73]  Aaron Bensimon,et al.  Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication , 2006, Nature.

[74]  J. Rowley,et al.  Chromosome translocations: dangerous liaisons revisited , 2001, Nature Reviews Cancer.

[75]  R. Mahmood,et al.  Slippage of Mitotic Arrest and Enhanced Tumor Development in Mice with BubR1 Haploinsufficiency , 2004, Cancer Research.

[76]  Thanos D Halazonetis,et al.  DNA replication stress as a hallmark of cancer. , 2015, Annual review of pathology.

[77]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[78]  L. Lipton,et al.  Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. , 2003, Cancer research.

[79]  K. Kinzler,et al.  Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. , 1992, Cancer research.

[80]  S. Hecht,et al.  Tobacco smoke carcinogens and lung cancer. , 1999, Journal of the National Cancer Institute.

[81]  Gary D Bader,et al.  Epigenomic alterations define lethal CIMP-positive ependymomas of infancy , 2014, Nature.

[82]  Steven A. Roberts,et al.  Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. , 2012, Molecular cell.

[83]  D. Cleveland,et al.  Losing balance: the origin and impact of aneuploidy in cancer , 2012, EMBO reports.

[84]  G. Cooper,et al.  Cellular transforming genes. , 1982, Science.

[85]  Cynthia J. Sakofsky,et al.  Break-induced replication is a source of mutation clusters underlying kataegis. , 2014, Cell reports.

[86]  Michael S. Becker,et al.  Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal Translocations , 2012, Cell.

[87]  Jiri Bartek,et al.  Replication stress links structural and numerical cancer chromosomal instability , 2013, Nature.

[88]  Reuben S Harris,et al.  RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. , 2002, Molecular cell.

[89]  Adam P Butler,et al.  Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer , 2014, Nature Genetics.

[90]  Lovelace J. Luquette,et al.  Diverse Mechanisms of Somatic Structural Variations in Human Cancer Genomes , 2013, Cell.

[91]  Gad Getz,et al.  Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing , 2014, Genome research.

[92]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[93]  Chris Sander,et al.  Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication , 2014, Genome research.

[94]  Dimitris Kletsas,et al.  Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints , 2006, Nature.

[95]  Carissa A. Sanchez,et al.  17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Andrew Menzies,et al.  The patterns and dynamics of genomic instability in metastatic pancreatic cancer , 2010, Nature.

[97]  Brent S. Pedersen,et al.  Loss of heterozygosity preferentially occurs in early replicating regions in cancer genomes , 2013, Nucleic acids research.

[98]  Geraint T. Williams,et al.  Extensive telomere erosion in the initiation of colorectal adenomas and its association with chromosomal instability. , 2013, Journal of the National Cancer Institute.

[99]  M. Gonsebatt,et al.  Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. , 2006, Carcinogenesis.

[100]  B. Preston,et al.  DNA replication fidelity and cancer. , 2010, Seminars in cancer biology.

[101]  A. Valencia,et al.  Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy , 2013, Nature Genetics.

[102]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[103]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[104]  J. Tchinda,et al.  Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer , 2005, Science.

[105]  Stephen P. Jackson,et al.  Chromothripsis and cancer: causes and consequences of chromosome shattering , 2012, Nature Reviews Cancer.

[106]  S. Gabriel,et al.  Pan-cancer patterns of somatic copy-number alteration , 2013, Nature Genetics.

[107]  Tracy T Batchelor,et al.  A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. , 2006, Cancer research.

[108]  N. A. Temiz,et al.  Evidence for APOBEC3B mutagenesis in multiple human cancers , 2013, Nature Genetics.

[109]  P. Peltomäki,et al.  Endometrial and colorectal tumors from patients with hereditary nonpolyposis colon cancer display different patterns of microsatellite instability. , 2002, The American journal of pathology.

[110]  K. Kovacs,et al.  Pituitary hypoplasia in Pttg-/- mice is protective for Rb+/- pituitary tumorigenesis. , 2005, Molecular endocrinology.

[111]  S. Knuutila,et al.  DNA copy number amplification profiling of human neoplasms , 2006, Oncogene.

[112]  Stephen S. Taylor,et al.  Aneuploid colon cancer cells have a robust spindle checkpoint , 2001, EMBO reports.

[113]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[114]  Gad Getz,et al.  High-order chromatin architecture determines the landscape of chromosomal alterations in cancer , 2011, Nature Biotechnology.

[115]  Jeffrey W. Clark,et al.  Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. , 2010, The New England journal of medicine.

[116]  T. Deerinck,et al.  Catastrophic Nuclear Envelope Collapse in Cancer Cell Micronuclei , 2013, Cell.

[117]  Duane A. Compton,et al.  Proliferation of aneuploid human cells is limited by a p53-dependent mechanism , 2010, The Journal of cell biology.

[118]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[119]  Alison L. Livingston,et al.  Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors , 2002, Nature Genetics.

[120]  Patricia L. Blount,et al.  Distribution of aneuploid cell populations in ulcerative colitis with dysplasia or cancer. , 1991, Gastroenterology.

[121]  Richard D Kolodner,et al.  The mismatch repair complex hMutS alpha recognizes 5-fluorouracil-modified DNA: implications for chemosensitivity and resistance. , 2004, Gastroenterology.

[122]  B. Mcclintock The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. , 1938, Genetics.

[123]  G. Superti-Furga,et al.  Stereospecific targeting of MTH1 by (S)-crizotinib as anticancer strategy , 2014, Nature.

[124]  A. de la Chapelle,et al.  Clinical relevance of microsatellite instability in colorectal cancer. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[125]  J. Korbel,et al.  Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.

[126]  Geert J. P. L. Kops,et al.  On the road to cancer: aneuploidy and the mitotic checkpoint , 2005, Nature Reviews Cancer.

[127]  J. Cleaver Defective Repair Replication of DNA in Xeroderma Pigmentosum , 1968, Nature.

[128]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[129]  S. Gabriel,et al.  Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability , 2012, Genome research.

[130]  S. Elledge,et al.  Cumulative Haploinsufficiency and Triplosensitivity Drive Aneuploidy Patterns and Shape the Cancer Genome , 2013, Cell.

[131]  B. Schuster-Böckler,et al.  Chromatin organization is a major influence on regional mutation rates in human cancer cells , 2012, Nature.

[132]  Matthew Meyerson,et al.  CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI , 2015, Nature.

[133]  D. Lambrechts,et al.  Prognostic Significance of POLE Proofreading Mutations in Endometrial Cancer , 2014, Journal of the National Cancer Institute.

[134]  Cristina Montagna,et al.  Aneuploidy acts both oncogenically and as a tumor suppressor. , 2007, Cancer cell.

[135]  Lovelace J. Luquette,et al.  Landscape of Somatic Retrotransposition in Human Cancers , 2012, Science.

[136]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[137]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[138]  Yuki Togashi,et al.  RET, ROS1 and ALK fusions in lung cancer , 2012, Nature Medicine.

[139]  P. Deloukas,et al.  Signatures of mutation and selection in the cancer genome , 2010, Nature.

[140]  Andrew Menzies,et al.  Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes , 2014, Science.

[141]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[142]  Lee T. Sam,et al.  Transcriptome Sequencing to Detect Gene Fusions in Cancer , 2009, Nature.

[143]  Z. Szallasi,et al.  Spatial and temporal diversity in genomic instability processes defines lung cancer evolution , 2014, Science.

[144]  Lynda Chin,et al.  Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice , 2000, Nature.

[145]  G. Parmigiani,et al.  Heterogeneity of genomic evolution and mutational profiles in multiple myeloma , 2014, Nature Communications.

[146]  M. Stratton,et al.  Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes , 2012, The Journal of pathology.

[147]  D J Lockhart,et al.  Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. , 2000, Genome research.

[148]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[149]  Bert Vogelstein,et al.  Mutations of mitotic checkpoint genes in human cancers , 1998, Nature.

[150]  D. Brat,et al.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma , 2012, Science.

[151]  P. Peltomäki Role of DNA mismatch repair defects in the pathogenesis of human cancer. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[152]  Sudhir Srivastava,et al.  Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. , 2004, Journal of the National Cancer Institute.

[153]  P. Stankiewicz,et al.  Chromosome Catastrophes Involve Replication Mechanisms Generating Complex Genomic Rearrangements , 2011, Cell.

[154]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[155]  D. Pinkel,et al.  Comparative Genomic Hybridization for Molecular Cytogenetic Analysis of Solid Tumors , 2022 .

[156]  Duane A. Compton,et al.  Examining the link between chromosomal instability and aneuploidy in human cells , 2008, The Journal of cell biology.

[157]  H T Lynch,et al.  Hereditary colorectal cancer. , 1991, Seminars in oncology.

[158]  M. Stratton,et al.  DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis , 2013, eLife.

[159]  C. Deng,et al.  Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation , 2006, Oncogene.

[160]  T. Helleday Cancer phenotypic lethality, exemplified by the non-essential MTH1 enzyme being required for cancer survival. , 2014, Annals of oncology : official journal of the European Society for Medical Oncology.

[161]  W. de Laat,et al.  Molecular mechanism of nucleotide excision repair. , 1999, Genes & development.

[162]  D. Compton,et al.  Deviant Kinetochore Microtubule Dynamics Underlie Chromosomal Instability , 2009, Current Biology.

[163]  K. Kinzler,et al.  Clues to the pathogenesis of familial colorectal cancer. , 1993, Science.

[164]  K. Kinzler,et al.  The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints , 2015, Journal of Immunotherapy for Cancer.

[165]  S N Thibodeau,et al.  Microsatellite instability in cancer of the proximal colon. , 1993, Science.

[166]  Yu Cao,et al.  Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing , 2014, Science.

[167]  T. Kunkel,et al.  Yeast DNA Polymerase ε Participates in Leading-Strand DNA Replication , 2007, Science.

[168]  W. Gerald,et al.  MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells , 2001, Nature.

[169]  O. Popanda,et al.  Detection of mutations in the DNA polymerase δ gene of human sporadic colorectal cancers and colon cancer cell lines , 1999, International journal of cancer.

[170]  W. Hahn,et al.  Loss of ATRX, Genome Instability, and an Altered DNA Damage Response Are Hallmarks of the Alternative Lengthening of Telomeres Pathway , 2012, PLoS genetics.

[171]  Bert Vogelstein,et al.  PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. , 2015, The New England journal of medicine.

[172]  E. Birney,et al.  A small cell lung cancer genome reports complex tobacco exposure signatures , 2009, Nature.

[173]  K. Kinzler,et al.  Genetic instabilities in human cancers , 1998, Nature.

[174]  S. Conticello The AID/APOBEC family of nucleic acid mutators , 2008, Genome Biology.

[175]  Mark D. Johnson,et al.  Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion , 2011, Proceedings of the National Academy of Sciences.

[176]  Steven J. M. Jones,et al.  Integrated genomic characterization of endometrial carcinoma , 2013, Nature.

[177]  R. DePinho,et al.  Telomeres and telomerase in cancer. , 2010, Carcinogenesis.

[178]  Steven J. M. Jones,et al.  Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma , 2014, Science.

[179]  V. O'shea,et al.  Base-excision repair of oxidative DNA damage , 2007, Nature.

[180]  T. Glover,et al.  Chromosome fragile sites. , 2007, Annual review of genetics.

[181]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[182]  M. D. Topal,et al.  DNA precursor pool: a significant target for N-methyl-N-nitrosourea in C3H/10T1/2 clone 8 cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[183]  D. Cleveland,et al.  Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements , 2012, Nature Medicine.

[184]  Replication stress links structural and numerical cancer chromosomal instability (vol 494, pg 492, 2013) , 2013 .

[185]  O. Delattre,et al.  Combined 24-color karyotyping and comparative genomic hybridization analysis indicates predominant rearrangements of early replicating chromosome regions in neuroblastoma. , 2003, Cancer genetics and cytogenetics.

[186]  J. Stamatoyannopoulos,et al.  Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair , 2013, Nature Biotechnology.

[187]  B. Tudek,et al.  Contribution of hMTH1 to the maintenance of 8-oxoguanine levels in lung DNA of non-small-cell lung cancer patients. , 2005, Journal of the National Cancer Institute.

[188]  T. Helleday,et al.  Hydroxyurea-Stalled Replication Forks Become Progressively Inactivated and Require Two Different RAD51-Mediated Pathways for Restart and Repair , 2010, Molecular cell.

[189]  G. Parmigiani,et al.  Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers , 2008, Proceedings of the National Academy of Sciences.

[190]  Yijun Ruan,et al.  B Cell Super-Enhancers and Regulatory Clusters Recruit AID Tumorigenic Activity , 2014, Cell.

[191]  Zoltan Szallasi,et al.  Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. , 2014, Cancer discovery.

[192]  R. DePinho,et al.  Connecting chromosomes, crisis, and cancer. , 2002, Science.

[193]  H. Gaskins,et al.  Commensal Bacteria, Redox Stress, and Colorectal Cancer: Mechanisms and Models , 2004, Experimental biology and medicine.

[194]  J. Herman,et al.  Low-level microsatellite instability in most colorectal carcinomas. , 2002, Cancer research.

[195]  James E. Bradner,et al.  Convergent Transcription at Intragenic Super-Enhancers Targets AID-Initiated Genomic Instability , 2014, Cell.

[196]  S. Queillé,et al.  High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[197]  T. Lange,et al.  Persistent Telomere Damage Induces Bypass of Mitosis and Tetraploidy , 2010, Cell.

[198]  V. Moskvina,et al.  Role of the Oxidative DNA Damage Repair Gene OGG1 in Colorectal Tumorigenesis , 2013 .

[199]  R. Houlston,et al.  Systematic review of microsatellite instability and colorectal cancer prognosis. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[200]  Roland Arnold,et al.  Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers , 2015, Nature Genetics.

[201]  C. Sawyers,et al.  Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. , 2001, The New England journal of medicine.

[202]  K. Kraemer,et al.  SHINING A LIGHT ON XERODERMA PIGMENTOSUM , 2012, The Journal of investigative dermatology.

[203]  N. Dyson,et al.  Suppression of genome instability in pRB-deficient cells by enhancement of chromosome cohesion. , 2014, Molecular cell.

[204]  Hongtao Yu,et al.  Mutational Inactivation of STAG2 Causes Aneuploidy in Human Cancer , 2011, Science.

[205]  H. Clevers,et al.  Mutations in the APC tumour suppressor gene cause chromosomal instability , 2001, Nature Cell Biology.

[206]  Daniel J Sargent,et al.  Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. , 2003, The New England journal of medicine.

[207]  O. Sieber,et al.  Genomic instability — the engine of tumorigenesis? , 2003, Nature Reviews Cancer.

[208]  Z. Storchová,et al.  The consequences of tetraploidy and aneuploidy , 2008, Journal of Cell Science.

[209]  R. Beroukhim,et al.  Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins , 2014, Nature Genetics.

[210]  K. Cimprich,et al.  Causes and consequences of replication stress , 2013, Nature Cell Biology.

[211]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.