Anomalous diffusion on regular and random models for diffusion-limited aggregation

Families of regular fractal models for Witten-Sander (DLA) clusters in d dimensions are proposed resembling the computer generated aggregates. The authors evaluate random walk dimensionalities exactly using resistance scaling ideas. The applicability of the conflicting conjectures of Alexander-Orbach (1982) (AO), dw=3df/2, and Aharony-Stauffer (1984) (AS), dw=df+1, to DLA is then examined. One finds that the dendritic nature of the fractals presented ensures that AS is satisfied exactly in all dimensions. An RSRG fugacity transformation method is applied to the simplest of the regular fractals in d=2. The result for dw is compared with the exact resistance scaling result to obtain an estimate of the error introduced by the RSRG. The RG method is then generalised to treat the random DLA problem. The resulting estimate for dw is in fortuitously good agreement with AS, the corresponding Monte Carlo data and the results above for the regular fractal models.

[1]  M. Sahimi,et al.  Random walks on percolation clusters at the percolation threshold , 1983 .

[2]  L. Sander,et al.  Diffusion-limited aggregation, a kinetic critical phenomenon , 1981 .

[3]  T. Williams,et al.  Stochastic Model for Abnormal Clone Spread through Epithelial Basal Layer , 1972, Nature.

[4]  F. Family,et al.  Geometrical arguments against the Alexander-Orbach conjecture for lattice animals and diffusion limited aggregates , 1984 .

[5]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[6]  Tamás Vicsek,et al.  Fractal models for diffusion controlled aggregation , 1983 .

[7]  G. Toulouse,et al.  Random walks on fractal structures and percolation clusters , 1983 .

[8]  L. Sander,et al.  Diffusion-limited aggregation , 1983 .

[9]  P. Meakin Cluster-particle aggregation with fractal (Levy flight) particle trajectories , 1984 .

[10]  F. Leyvraz,et al.  To What Class of Fractals Does the Alexander-Orbach Conjecture Apply? , 1983 .

[11]  H. Gould,et al.  Kinetics of Formation of Randomly Branched Aggregates: A Renormalization-Group Approach , 1983 .

[12]  F. Family,et al.  Cell renormalisation of growth processes: 'true' self-avoiding walks and growing animals , 1984 .

[13]  L. Pietronero,et al.  Fractal Dimension of Dielectric Breakdown , 1984 .

[14]  H. Hentschel,et al.  Intermittency Exponent in Fractally Homogeneous Turbulence , 1982 .

[15]  F. Family Cluster renormalisation study of site lattice animals in two and three dimensions , 1983 .

[16]  S. Alexander,et al.  Density of states on fractals : « fractons » , 1982 .

[17]  R. Guyer Random walking on a fractal , 1984 .

[18]  J. G. Zabolitzky Monte Carlo evidence against the Alexander-Orbach conjecture for percolation conductivity , 1984 .

[19]  J. Langer Instabilities and pattern formation in crystal growth , 1980 .

[20]  H. Gould,et al.  Diffusion on lattice animals and percolation clusters: a renormalisation group approach , 1984 .

[21]  Paul Meakin,et al.  Diffusion-controlled cluster formation in 2—6-dimensional space , 1983 .

[22]  S. Havlin Comment on the Aharony-Stauffer Conjecture , 1984 .

[23]  H. Eugene Stanley,et al.  Spectral dimension for the diffusion-limited aggregation model of colloid growth , 1983 .

[24]  T. Witten,et al.  Long-range correlations in smoke-particle aggregates , 1979 .

[25]  D. Stauffer,et al.  Possible Breakdown of the Alexander-Orbach Rule at Low Dimensionalities , 1984 .

[26]  B. Mandelbrot,et al.  Solvable Fractal Family, and Its Possible Relation to the Backbone at Percolation , 1981 .

[27]  Y. Oono,et al.  Walks, trials and polymers with loops , 1984 .

[28]  M. Sahimi,et al.  Superuniversal spectral dimension for dilute branched polymers , 1984 .

[29]  H. Stanley,et al.  Fractal growth viscous fingers: quantitative characterization of a fluid instability phenomenon , 1985, Nature.

[30]  H. Gould,et al.  Polymer chain statistics and universality: Crossover from random to self‐avoiding walks , 1984 .

[31]  H. Eugene Stanley,et al.  Flow in porous media: The "backbone" fractal at the percolation threshold , 1984 .

[32]  Peter Reynolds,et al.  Large-cell Monte Carlo renormalization group for percolation , 1980 .

[33]  S. D. Queiroz,et al.  A direct renormalization group approach for the excluded volume problem , 1980 .