Extractive summarisation of legal texts

We describe research carried out as part of a text summarisation project for the legal domain for which we use a new XML corpus of judgments of the UK House of Lords. These judgments represent a particularly important part of public discourse due to the role that precedents play in English law. We present experimental results using a range of features and machine learning techniques for the task of predicting the rhetorical status of sentences and for the task of selecting the most summary-worthy sentences from a document. Results for these components are encouraging as they achieve state-of-the-art accuracy using robust, automatically generated cue phrase information. Sample output from the system illustrates the potential of summarisation technology for legal information management systems and highlights the utility of our rhetorical annotation scheme as a model of legal discourse, which provides a clear means for structuring summaries and tailoring them to different types of users.

[1]  Atefeh Farzindar,et al.  Résumé automatique de textes juridiques , 2005 .

[2]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[3]  Hervé Déjean,et al.  Introduction to the CoNLL-2001 shared task: clause identification , 2001, CoNLL.

[4]  Francine Chen,et al.  A trainable document summarizer , 1995, SIGIR '95.

[5]  Ferran Plà,et al.  Shallow Parsing using Specialized HMMs , 2002, J. Mach. Learn. Res..

[6]  Daniel Marcu,et al.  The automatic construction of large-scale corpora for summarization research , 1999, SIGIR '99.

[7]  Marc Moens,et al.  LT TTT - A Flexible Tokenisation Tool , 2000, LREC.

[8]  Walter Daelemans,et al.  Proceedings of the Seventh Conference on Natural Language Learning, CoNLL 2003, Held in cooperation with HLT-NAACL 2003, Edmonton, Canada, May 31 - June 1, 2003 , 2003, CoNLL.

[9]  Kathleen McKeown,et al.  The decomposition of human-written summary sentences , 1999, SIGIR '99.

[10]  John M. Swales,et al.  Genre Analysis: English in Academic and Research Settings , 1993 .

[11]  Tom M. van Engers,et al.  A Case Study on Automated Norm Extraction , 2004 .

[12]  Klaus Krippendorff,et al.  Content Analysis: An Introduction to Its Methodology , 1980 .

[13]  Marc Moens,et al.  Articles Summarizing Scientific Articles: Experiments with Relevance and Rhetorical Status , 2002, CL.

[14]  Rob Malouf,et al.  A Comparison of Algorithms for Maximum Entropy Parameter Estimation , 2002, CoNLL.

[15]  J. Darroch,et al.  Generalized Iterative Scaling for Log-Linear Models , 1972 .

[16]  Vincent A. W. M. M. Aleven,et al.  Teaching case-based argumentation through a model and examples , 1997 .

[17]  Mark T. Maybury,et al.  Automatic Summarization , 2002, Computational Linguistics.

[18]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[19]  Claire Grover,et al.  Automatic summarisation of legal documents , 2003, ICAIL.

[20]  Edward Gibson,et al.  Paragraph-, Word-, and Coherence-based Approaches to Sentence Ranking: A Comparison of Algorithm and Human Performance , 2004, ACL.

[21]  Mark Wasson,et al.  Using Leading Text for News Summaries: Evaluation Results and Implications for Commercial Summarization Applications , 1998, ACL.

[22]  Miles Osborne,et al.  Using maximum entropy for sentence extraction , 2002, ACL 2002.

[23]  Inderjeet Mani,et al.  Machine Learning of Generic and User-Focused Summarization , 1998, AAAI/IAAI.

[24]  Marie-Francine Moens,et al.  First steps in building a model for the retrieval of court decisions , 2002, Int. J. Hum. Comput. Stud..

[25]  Karen Spärck Jones Automatic summarising: factors and directions , 1998, ArXiv.

[26]  Jean Carletta,et al.  An annotation scheme for discourse-level argumentation in research articles , 1999, EACL.

[27]  Oi Yee Kwong,et al.  A Preliminary Study of Lexical Density for the Development of XML-based Discourse Structure Tagger , 2001 .

[28]  Michael Collins,et al.  Discriminative Reranking for Natural Language Parsing , 2000, CL.

[29]  Radboud Winkels,et al.  METAlex: An XML Standard for Legal Documents , 2003 .

[30]  Claire Grover,et al.  In Proceedings of the ACL-2004 Text Summarization Branches Out Workshop , 2004 .

[31]  Stefan Evert,et al.  The NITE XML Toolkit: Flexible annotation for multimodal language data , 2003, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[32]  Marc Moens,et al.  Discourse-level argumentation in scientific articles: human and automatic annotation , 1999 .

[33]  Marc Moens,et al.  What's Yours and What's Mine: Determining Intellectual Attribution in Scientific Text , 2000, EMNLP.

[34]  K. Krippendorff Krippendorff, Klaus, Content Analysis: An Introduction to its Methodology . Beverly Hills, CA: Sage, 1980. , 1980 .

[36]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[37]  Marie-Francine Moens,et al.  Abstracting of legal cases: the SALOMON experience , 1997, ICAIL '97.

[38]  Mark T. Maybury,et al.  Advances in Automatic Text Summarization , 1999 .

[39]  James R. Curran,et al.  Investigating GIS and Smoothing for Maximum Entropy Taggers , 2003, EACL.

[40]  John Gibbons Language and the Law , 1994 .

[41]  Archibald MacLeish,et al.  The Language of the Law , 1963 .

[42]  Adwait Ratnaparkhi,et al.  A Maximum Entropy Model for Part-Of-Speech Tagging , 1996, EMNLP.

[43]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[44]  Benjamin C. Hachey,et al.  Recognising Clauses Using Symbolic and Machine Learning Approaches , 2002 .

[45]  Carlo Batini,et al.  A Federative Approach to Laws Access by Citizens: The "Normeinrete" System , 2003, EGOV.

[46]  Mitchell P. Marcus,et al.  Maximum entropy models for natural language ambiguity resolution , 1998 .

[47]  William C. Mann,et al.  Rhetorical Structure Theory: Description and Construction of Text Structures , 1987 .

[48]  Mirella Lapata,et al.  Probabilistic Text Structuring: Experiments with Sentence Ordering , 2003, ACL.

[49]  John A. Carroll,et al.  Robust, applied morphological generation , 2000, INLG.

[50]  Marc Moens,et al.  Argumentative Classification of Extracted Sentences as a First Step Towards Flexible Abstracting , 1999 .

[51]  Guy Lapalme,et al.  Legal Text Summarization by Exploration of the Thematic Structure and Argumentative Roles , 2004 .

[52]  Harold Borko,et al.  Abstracting Concepts and Methods , 1975 .

[53]  Andrew McCallum,et al.  Maximum Entropy Markov Models for Information Extraction and Segmentation , 2000, ICML.

[54]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[55]  G. Myers ‘In this paper we report …'’: Speech acts and scientific facts , 1992 .

[56]  Simone Teufel,et al.  Sentence extraction as a classification task , 1997 .

[57]  Christopher D. Manning,et al.  Enriching the Knowledge Sources Used in a Maximum Entropy Part-of-Speech Tagger , 2000, EMNLP.

[58]  Kevin D. Ashley,et al.  Textual case-based reasoning , 2005, Knowl. Eng. Rev..

[59]  Andrei Mikheev,et al.  Automatic Rule Induction for Unknown-Word Guessing , 1997, CL.

[60]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[61]  Michele Banko,et al.  Generating Extraction-Based Summaries from Hand-Written Summaries by Aligning Text Spans , 1999 .

[62]  James R. Curran,et al.  Language Independent NER using a Maximum Entropy Tagger , 2003, CoNLL.

[63]  Trevor J. M. Bench-Capon,et al.  Towards a computational account of persuasion in law , 2003, ICAIL.

[64]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.