Some known facts about financial data

Many researchers are interesting in applying the neural networks methods to financial data. In fact these data are very complex, and classical methods do not always give satisfactory results. They need strong hypotheses which can be false, they have a strongly non-linear structures, and so on. But neural models must also be cautiously used. The black box aspect can be very dangerous. In this very simple paper, we try to indicate some specificity of financial data, to prevent some bad use of neural models.

[1]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[2]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[3]  Daniel B. Nelson Stationarity and Persistence in the GARCH(1,1) Model , 1990, Econometric Theory.

[4]  A. Refenes Neural Networks in the Capital Markets , 1994 .

[5]  A. Lo,et al.  Data-Snooping Biases in Tests of Financial Asset Pricing Models , 1989 .

[6]  T. Kohonen,et al.  Visual Explorations in Finance with Self-Organizing Maps , 1998 .

[7]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[8]  Vito Volterra,et al.  Theory of Functionals and of Integral and Integro-Differential Equations , 2005 .

[9]  B. LeBaron,et al.  Simple Technical Trading Rules and the Stochastic Properties of Stock Returns , 1992 .

[10]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[11]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[12]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[13]  Stephen Taylor,et al.  Forecasting S&P 100 Volatility: The Incremental Information Content of Implied Volatilities and High Frequency Index Returns , 2000 .

[14]  Tarun Chordia,et al.  Momentum, Business Cycle and Time Varying Expected Returns , 2001 .

[15]  Kevin Q. Wang Asset Pricing with Conditioning Information: A New Test , 2003 .

[16]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[17]  H. White,et al.  Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap , 1999 .

[18]  E. Michael Azoff,et al.  Neural Network Time Series: Forecasting of Financial Markets , 1994 .

[19]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[20]  H. Markowitz Portfolio Selection: Efficient Diversification of Investments , 1971 .

[21]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[22]  Charles G. Renfro,et al.  Benchmarks and software standards: A case study of GARCH procedures , 1998 .

[23]  C. Gourieroux,et al.  Pseudo Maximum Likelihood Methods: Applications to Poisson Models , 1984 .

[24]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[25]  Mordecai Kurz,et al.  Endogenous Uncertainty and Market Volatility , 1999 .

[26]  B. LeBaron,et al.  A test for independence based on the correlation dimension , 1996 .

[27]  Myron S. Scholes,et al.  Estimating betas from nonsynchronous data , 1977 .

[28]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[29]  Mordecai Kurz,et al.  Endogenous uncertainty and market volatility , 1999 .

[30]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[31]  Stephen A. Ross,et al.  Differential Information and Performance Measurement Using a Security Market Line , 1985 .