Deciding the Bell Number for Hereditary Graph Properties

The paper [J. Balogh, B. Bollobas, D. Weinreich, J. Combin. Theory Ser. B, 95 (2005), pp. 29--48] identifies a jump in the speed of hereditary graph properties to the Bell number $B_n$ and provides a partial characterization of the family of minimal classes whose speed is at least $B_n$. In the present paper, we give a complete characterization of this family. Since this family is infinite, the decidability of the problem of determining if the speed of a hereditary property is above or below the Bell number is questionable. We answer this question positively by showing that there exists an algorithm which, given a finite set $\mathcal{F}$ of graphs, decides whether the speed of the class of graphs containing no induced subgraphs from the set $\mathcal{F}$ is above or below the Bell number. For properties defined by infinitely many minimal forbidden induced subgraphs, the speed is known to be above the Bell number.

[1]  H. Prömel,et al.  Excluding Induced Subgraphs III: A General Asymptotic , 1992 .

[2]  Vadim V. Lozin,et al.  Clique-Width and the Speed of Hereditary Properties , 2009, Electron. J. Comb..

[3]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[4]  Lukás Mach,et al.  Amalgam Width of Matroids , 2013, IPEC.

[5]  Paul Wollan,et al.  The structure of graphs not admitting a fixed immersion , 2013, J. Comb. Theory, Ser. B.

[6]  Béla Bollobás,et al.  The Penultimate Rate of Growth for Graph Properties , 2001, Eur. J. Comb..

[7]  Vadim V. Lozin,et al.  Two forbidden induced subgraphs and well-quasi-ordering , 2011, Discret. Math..

[8]  Béla Bollobás,et al.  The Speed of Hereditary Properties of Graphs , 2000, J. Comb. Theory B.

[9]  P. Hammer,et al.  Aggregation of inequalities in integer programming. , 1975 .

[10]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[11]  Noga Alon,et al.  The structure of almost all graphs in a hereditary property , 2009, J. Comb. Theory B.

[12]  Ph. G. Kolaitis,et al.  _{+1}-free graphs: asymptotic structure and a 0-1 law , 1987 .

[13]  Béla Bollobás,et al.  A jump to the bell number for hereditary graph properties , 2005, J. Comb. Theory, Ser. B.

[14]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[15]  A. Gyárfás Problems from the world surrounding perfect graphs , 1987 .

[16]  Hans Jürgen Prömel,et al.  Excluding Induced Subgraphs: Quadrilaterals , 1991, Random Struct. Algorithms.

[17]  Daniel Král Decomposition Width of Matroids , 2010, ICALP.

[18]  Edward R. Scheinerman,et al.  On the Size of Hereditary Classes of Graphs , 1994, J. Comb. Theory B.

[19]  Hans Jürgen Prömel,et al.  Excluding Induced Subgraphs II: Extremal Graphs , 1993, Discret. Appl. Math..

[20]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..

[21]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[22]  P. Seymour,et al.  Excluding induced subgraphs , 2006 .