Reduced‐order modeling of lead‐acid battery using cluster analysis and orthogonal cluster analysis method

[1]  Farid Alavyoon,et al.  Theoretical and experimental studies of free convection and stratification of electrolyte in a lead-acid cell during recharge , 1991 .

[2]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[3]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[4]  D. Gidaspow,et al.  A Model for Discharge of Storage Batteries , 1973 .

[5]  Daniel Simonsson,et al.  A mathematical model for the porous lead dioxide electrode , 1973 .

[6]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[7]  Chih-Cheng Hsu,et al.  A transient reduced order model for battery thermal management based on singular value decomposition , 2014, 2014 IEEE Energy Conversion Congress and Exposition (ECCE).

[8]  K. Micka,et al.  Theory of porous electrodes—XII. The negative plate of the lead-acid battery☆ , 1973 .

[9]  Lu Xia,et al.  A computationally efficient implementation of a full and reduced-order electrochemistry-based model for Li-ion batteries , 2017 .

[10]  Arnaud Delaille,et al.  Study of the "coup de fouet" of lead-acid cells as a function of their state-of-charge and state-of-health , 2006 .

[11]  Farschad Torabi,et al.  Single and multi‐objective optimization for the performance enhancement of lead–acid battery cell , 2016 .

[12]  Gunzburger,et al.  Advances in Studies and Applications of Centroidal Voronoi Tessellations , 2010 .

[13]  Vahid Esfahanian,et al.  Prediction of temperature behavior of a lead–acid battery by means of Lewis number , 2018, Electrochimica Acta.

[14]  Guangzhong Dong,et al.  Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method , 2016 .

[15]  Vahid Esfahanian,et al.  Study of Thermal-Runaway in Batteries II. The Main Sources of Heat Generation in Lead-Acid Batteries , 2013 .

[16]  Chenbin Zhang,et al.  A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy , 2015 .

[17]  Trung Van Nguyen,et al.  A mathematical model of a hermetically sealed lead-acid cell , 1993 .

[18]  Ralph E. White,et al.  Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations , 2009 .

[19]  Farschad Torabi,et al.  An innovative computational algorithm for simulation of lead-acid batteries , 2008 .

[20]  Farschad Torabi,et al.  Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition , 2016 .

[21]  Mario Ohlberger,et al.  Model Reduction for Multiscale Lithium-Ion Battery Simulation , 2016, ENUMATH.

[22]  Farschad Torabi,et al.  Study of Thermal-Runaway in Batteries I. Theoretical Study and Formulation , 2011 .

[23]  Max Gunzburger,et al.  POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .

[24]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[25]  Minghui Hu,et al.  Fractional‐order modeling and SOC estimation of lithium‐ion battery considering capacity loss , 2018, International Journal of Energy Research.

[26]  W. Sunu Mathematical Model for Design of Battery Electrodes: Lead-Acid Cell Modelling , 1984 .

[27]  Bernhard Schweighofer,et al.  An accurate model for a lead‐acid cell suitable for real‐time environments applying control volume method , 2003 .

[28]  Ralph E. White,et al.  A Mathematical Model of a Lead‐Acid Cell Discharge, Rest, and Charge , 1987 .

[29]  Max D. Gunzburger,et al.  Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Complex Systems , 2006, SIAM J. Sci. Comput..

[30]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .

[31]  J. Euler Porendimensionen und Oberflächenkapazität von Braunstein , 1961 .

[32]  Adnan H. Anbuky,et al.  The behaviour of the coup de fouet of valve-regulated lead–acid batteries , 2002 .

[33]  Chaoyang Wang,et al.  Numerical Modeling of Coupled Electrochemical and Transport Processes in Lead‐Acid Batteries , 1997 .

[34]  Farschad Torabi,et al.  Simulation of lead-acid battery using model order reduction , 2015 .

[35]  Farschad Torabi,et al.  Numerical simulation of lead-acid batteries using Keller-Box method , 2006 .

[36]  Goodarz Ahmadi,et al.  Design parameter study on the performance of lead-acid batteries , 2014 .