Electromagnetic theories of surface-enhanced Raman spectroscopy.

Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS.

[1]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[2]  Richard K. Chang,et al.  Surface-Enhanced Electric Intensities on Large Silver Spheroids , 1983 .

[3]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[4]  A. Otto Surface-enhanced Raman scattering: “Classical” and “Chemical” origins , 1984 .

[5]  J. F. Arenas,et al.  Charge-Transfer Processes in Surface-Enhanced Raman Scattering. Franck−Condon Active Vibrations of Pyrazine , 1996 .

[6]  Mohsen Rahmani,et al.  Fano resonance in novel plasmonic nanostructures , 2013 .

[7]  Martin Moskovits,et al.  Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals , 1978 .

[8]  Q. Wei,et al.  Cavity resonances of metal-dielectric-metal nanoantennas. , 2008, Optics express.

[9]  Jianing Chen,et al.  Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy , 2015, Scientific Reports.

[10]  S. Corni Metal–Molecule Electrodynamic Coupling , 2013 .

[11]  Martin Moskovits,et al.  Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. , 2012, Nano letters.

[12]  Lasse Jensen,et al.  A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption. , 2011, The Journal of chemical physics.

[13]  E. Burstein,et al.  Surface-Electromagnetic-Wave-Enhanced Raman Scattering by Overlayers on Metals , 1976 .

[14]  Ken-ichi Yoshida,et al.  Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of anti-Stokes and Stokes Raman spectra , 2007 .

[15]  John R. Lombardi,et al.  Ab Initio Frequency Calculations of Pyridine Adsorbed on an Adatom Model of a SERS Active Site of a Silver Surface , 2003 .

[16]  Benjamin Gallinet,et al.  Plasmonic radiance: probing structure at the Ångström scale with visible light. , 2013, Nano letters.

[17]  Bo Liu,et al.  Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. , 2006, Journal of the American Chemical Society.

[18]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[19]  De‐Yin Wu,et al.  Cations-modified cluster model for density-functional theory simulation of potential dependent Raman scattering from surface complex/electrode systems. , 2012, Chemical communications.

[20]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[21]  G. Haran Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields. , 2010, Accounts of chemical research.

[22]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[23]  N. Halas,et al.  Surface-enhanced Raman spectroscopy: Substrates and materials for research and applications , 2013 .

[24]  Joel I. Gersten,et al.  The effect of surface roughness on surface enhanced Raman scattering , 1980 .

[25]  H. Ueba Theory of charge transfer excitation in surface enhanced Raman scattering , 1983 .

[26]  L. Liz‐Marzán,et al.  Recent approaches toward creation of hot spots for SERS detection , 2014 .

[27]  A. Agarwal,et al.  Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions , 2011, Proceedings of the National Academy of Sciences.

[28]  Zhilin Yang,et al.  How To Light Special Hot Spots in Multiparticle-Film Configurations. , 2016, ACS nano.

[29]  Zhi-yuan Li,et al.  Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor. , 2011, Biomaterials.

[30]  M. Moskovits,et al.  Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver , 1984 .

[31]  Martin Moskovits,et al.  How the localized surface plasmon became linked with surface-enhanced Raman spectroscopy , 2012, Notes and Records of the Royal Society.

[32]  W. Lu,et al.  Hierarchical Porous Plasmonic Metamaterials for Reproducible Ultrasensitive Surface‐Enhanced Raman Spectroscopy , 2015, Advanced materials.

[33]  Christian Hafner,et al.  Tuning the resonance frequency of Ag-coated dielectric tips. , 2007, Optics express.

[34]  S. Singamaneni,et al.  Plasmonic planet-satellite analogues: hierarchical self-assembly of gold nanostructures. , 2012, Nano letters.

[35]  Jian-Feng Li,et al.  Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. , 2007, Chemical communications.

[36]  Thomas E. Furtak,et al.  A critical analysis of theoretical models for the giant Raman effect from adsorbed molecules , 1980 .

[37]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[38]  J. Baumberg,et al.  How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror , 2017 .

[39]  G. Schatz,et al.  Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra. , 2012, The journal of physical chemistry. A.

[40]  Wenqi Zhu,et al.  Directional Raman scattering from single molecules in the feed gaps of optical antennas. , 2013, Nano letters.

[41]  H. Miyazaki,et al.  Metal-insulator-metal plasmon nanocavities: Analysis of optical properties , 2007 .

[42]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[43]  Naomi J. Halas,et al.  Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates , 1999 .

[44]  Weiyang Li,et al.  Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. , 2009, Nano letters.

[45]  M. Moskovits,et al.  Quantitative Determination of the Raman Enhancement of Ag30(CO)25 and Ag50(CO)40 Matrix Isolated in Solid Carbon Monoxide , 2016 .

[46]  R Stanley Williams,et al.  Gold nanofingers for molecule trapping and detection. , 2010, Journal of the American Chemical Society.

[47]  Guanhua Chen,et al.  A multiscale quantum mechanics/electromagnetics method for device simulations. , 2015, Chemical Society reviews.

[48]  Wolfgang Kiefer,et al.  Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering , 1994 .

[49]  R. Frontiera,et al.  SERS: Materials, applications, and the future , 2012 .

[50]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[51]  C. Min,et al.  Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode Surface-enhanced Raman scattering , 2013 .

[52]  E. Blanch,et al.  Surface enhanced Raman optical activity (SEROA). , 2008, Chemical Society reviews.

[53]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .

[54]  K. Nobusada,et al.  Theoretical approach for optical response in electrochemical systems: application to electrode potential dependence of surface-enhanced Raman scattering. , 2014, The Journal of chemical physics.

[55]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[56]  Dau-Sing Y. Wang,et al.  Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. , 1980, Applied optics.

[57]  Q. Wei,et al.  Numerical Studies of Metal–Dielectric–Metal Nanoantennas , 2010, IEEE Transactions on Nanotechnology.

[58]  Jian-Feng Li,et al.  Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. , 2017, Chemical reviews.

[59]  Sung-Hyun Ahn,et al.  Surface-enhanced Raman scattering from a single nanoparticle-plane junction. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[60]  F. Lagugné-Labarthet,et al.  Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. , 2013, Optics express.

[61]  A. Otto,et al.  Surface enhanced Raman scattering , 1983 .

[62]  Matthew M Adams,et al.  Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. , 2006, Optics express.

[63]  J. Creighton,et al.  Plasma resonance — enhanced raman scattering by absorbates on gold colloids: The effects of aggregation , 1982 .

[64]  Y. Prior,et al.  Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation. , 2014, Physical chemistry chemical physics : PCCP.

[65]  Robert E. Benner,et al.  Surface plasmon contribution to SERS , 1980 .

[66]  Reuven Gordon,et al.  Single molecule directivity enhanced Raman scattering using nanoantennas. , 2012, Nano letters.

[67]  Jian-Feng Li,et al.  Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape. , 2006, Faraday discussions.

[68]  De‐Yin Wu,et al.  Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials , 2016 .

[69]  David R. Smith,et al.  Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. , 2010, Nano letters.

[70]  Naomi J Halas,et al.  Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates. , 2005, Journal of the American Chemical Society.

[71]  Andreas Otto,et al.  The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering , 2005 .

[72]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[73]  A. Demming,et al.  Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering. , 2005, The Journal of chemical physics.

[74]  Q. Wei,et al.  Resonant cavity modes of circular plasmonic patch nanoantennas , 2014 .

[75]  Zhilin Yang,et al.  Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. , 2003, Journal of the American Chemical Society.

[76]  H. Metiu,et al.  Light scattering by a molecule near a solid surface. II. Model calculations , 1979 .

[77]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[78]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. , 2012, Annual review of physical chemistry.

[79]  C. Murphy,et al.  Face-Dependent Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy of 2,2′-Bipyridine on Au(100) and Au(111) , 2012 .

[80]  Hong Wei,et al.  Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. , 2013, Nanoscale.

[81]  Javier Aizpurua,et al.  Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities. , 2015, ACS nano.

[82]  Yi Luo,et al.  Theoretical Modeling of Plasmon-Enhanced Raman Images of a Single Molecule with Subnanometer Resolution. , 2014, Journal of the American Chemical Society.

[83]  V. Shalaev,et al.  NONLINEAR OPTICS OF RANDOM METAL-DIELECTRIC FILMS , 1998 .

[84]  Bhavya Sharma,et al.  Molecular plasmonics for nanoscale spectroscopy. , 2014, Chemical Society reviews.

[85]  C. Teodorescu Image molecular dipoles in surface enhanced Raman scattering. , 2015, Physical chemistry chemical physics : PCCP.

[86]  De‐Yin Wu,et al.  Chemical enhancement effects in SERS spectra: A quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals , 2008 .

[87]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticles near Metallic Surfaces , 2004 .

[88]  V. A. Apkarian,et al.  Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy at 1 MHz Repetition Rates. , 2016, The journal of physical chemistry letters.

[89]  Logan K. Ausman,et al.  On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres. , 2009, The Journal of chemical physics.

[90]  M. Ratner,et al.  Raman scattering in current-carrying molecular junctions. , 2008, The Journal of chemical physics.

[91]  P. Barber Absorption and scattering of light by small particles , 1984 .

[92]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[93]  P. K. Aravind,et al.  The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres , 1981 .

[94]  De‐Yin Wu,et al.  Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures , 2002 .

[95]  R. V. Van Duyne,et al.  Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. , 2008, Journal of the American Chemical Society.

[96]  Nicholas A. Klymyshyn,et al.  Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy , 2003 .

[97]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[98]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[99]  S. Ichimura,et al.  Where are we in the study of SERS? Role of chemisorption and charge transfer , 1982 .

[100]  Mark A. Ratner,et al.  Classical Electrodynamics Coupled to Quantum Mechanics for Calculation of Molecular Optical Properties: a RT-TDDFT/FDTD Approach , 2010 .

[101]  Frederick W. King,et al.  Theory of Raman scattering by molecules adsorbed on electrode surfaces , 1978 .

[102]  Alistair Elfick,et al.  Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy. , 2006, The journal of physical chemistry. B.

[103]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[104]  Eric C Le Ru,et al.  Single-molecule surface-enhanced Raman spectroscopy. , 2012, Annual review of physical chemistry.

[105]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[106]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[107]  Benjamin Gallinet,et al.  Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. , 2011, ACS nano.

[108]  Javier Aizpurua,et al.  Electromagnetic field enhancement in TERS configurations , 2009 .

[109]  Richard P Van Duyne,et al.  Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy. , 2011, The journal of physical chemistry letters.

[110]  B. Persson On the theory of surface-enhanced Raman scattering , 1981 .

[111]  P G Etchegoin,et al.  Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. , 2006, The Journal of chemical physics.

[112]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[113]  George C. Schatz,et al.  High-performance SERS substrates: Advances and challenges , 2013 .

[114]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[115]  T. Furtak,et al.  Evidence for Ag cluster vibrations in enhanced Raman scattering from the Ag/electrolyte interface , 1986 .

[116]  Chao Zhang,et al.  Optical Origin of Subnanometer Resolution in Tip-Enhanced Raman Mapping , 2015 .

[117]  George C. Schatz,et al.  Modeling the effect of small gaps in surface-enhanced Raman spectroscopy , 2012 .

[118]  Peidong Yang,et al.  Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. , 2010, Journal of the American Chemical Society.

[119]  De‐Yin Wu,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy of pyridine on smooth silver electrodes , 2011 .

[120]  Joel I. Gersten,et al.  Rayleigh, Mie, and Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[121]  Yong Wang,et al.  High-purity separation of gold nanoparticle dimers and trimers. , 2009, Journal of the American Chemical Society.

[122]  Chad A Mirkin,et al.  Rationally designed nanostructures for surface-enhanced Raman spectroscopy. , 2008, Chemical Society reviews.

[123]  De‐Yin Wu,et al.  Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. , 2011, Journal of the American Chemical Society.

[124]  S. Kawata,et al.  Metallized tip amplification of near-field Raman scattering , 2000 .

[125]  David R. Smith,et al.  Coupled-mode theory for film-coupled plasmonic nanocubes , 2014 .

[126]  Xin Xu,et al.  Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy , 2011, Nature communications.

[127]  L. A. Lipscomb,et al.  Surface-Enhanced Hyper-Raman Spectroscopy , 1991 .

[128]  R. V. Van Duyne,et al.  Immobilized nanorod assemblies: fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates. , 2013, Analytical chemistry.

[129]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[130]  J. Aizpurua,et al.  Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps , 2015 .

[131]  G. Schatz,et al.  Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering. , 2006, Journal of the American Chemical Society.

[132]  J. Baumberg,et al.  Dressing plasmons in particle-in-cavity architectures , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[133]  R. G. Freeman,et al.  Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. , 2013, Journal of the American Chemical Society.

[134]  Christine H. Moran,et al.  Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. , 2011, Angewandte Chemie.

[135]  Jian-Feng Li,et al.  Further expanding versatility of surface-enhanced Raman spectroscopy: from non-traditional SERS-active to SERS-inactive substrates and single shell-isolated nanoparticle. , 2017, Faraday discussions.

[136]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[137]  G. Schatz Theoretical Studies of Surface Enhanced Raman Scattering , 1984 .

[138]  Wenqi Zhu,et al.  Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model. , 2011, Optics express.

[139]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[140]  Peter Nordlander,et al.  Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. , 2011, Nano letters.

[141]  Namkyoo Park,et al.  Gap-Plasmon-Enhanced Nanofocusing Near-Field Microscopy , 2016 .

[142]  Reuven Gordon,et al.  Directivity enhanced Raman spectroscopy using nanoantennas. , 2011, Nano letters.

[143]  Peter Nordlander,et al.  Plasmonic nanostructures: artificial molecules. , 2007, Accounts of chemical research.

[144]  Richard P Van Duyne,et al.  Creating, characterizing, and controlling chemistry with SERS hot spots. , 2013, Physical chemistry chemical physics : PCCP.

[145]  Lasse Jensen,et al.  Understanding the molecule-surface chemical coupling in SERS. , 2009, Journal of the American Chemical Society.

[146]  Benjamin Gallinet,et al.  Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. , 2013, ACS nano.

[147]  M. Moskovits,et al.  Influence of surface roughness on the transmission and reflectance spectra of adsorbed species , 1973 .

[148]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[149]  Dana D. Dlott,et al.  Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering , 2008, Science.

[150]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[151]  R. Aroca,et al.  Plasmon enhanced spectroscopy. , 2013, Physical chemistry chemical physics : PCCP.

[152]  M. Kiguchi,et al.  Surface enhanced Raman scattering of a single molecular junction. , 2015, Physical chemistry chemical physics : PCCP.

[153]  H. K. Wickramasinghe,et al.  Billion-fold increase in tip-enhanced Raman signal. , 2014, ACS nano.

[154]  Garnett W. Bryant,et al.  The Morphology of Narrow Gaps Modifies the Plasmonic Response , 2015 .

[155]  Ullrich Steiner,et al.  Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. , 2013, The Analyst.

[156]  Younan Xia,et al.  Synthesis and optical properties of silver nanobars and nanorice. , 2007, Nano letters.

[157]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[158]  T. Furtak Current understanding of the mechanism of surface enhanced Raman scattering , 1983 .

[159]  Ken-ichi Yoshida,et al.  Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures , 2010 .

[160]  S. Schlücker Surface-enhanced Raman spectroscopy: concepts and chemical applications. , 2014, Angewandte Chemie.

[161]  Dmitri V. Voronine,et al.  Nature of surface-enhanced coherent Raman scattering , 2014 .

[162]  J. Tsang,et al.  Surface plasmon polariton contributions to strokes emission from molecular monolayers on periodic Ag surfaces , 1980 .

[163]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[164]  Samuel L. Kleinman,et al.  Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment. , 2011, Journal of the American Chemical Society.

[165]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[166]  G. Schatz,et al.  The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances , 1981 .

[167]  N. Halas,et al.  Tailoring plasmonic substrates for surface enhanced spectroscopies. , 2008, Chemical Society reviews.

[168]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[169]  Logan K. Ausman,et al.  Structural Effects in the Electromagnetic Enhancement Mechanism of Surface-Enhanced Raman Scattering: Dipole Reradiation and Rectangular Symmetry Effects for Nanoparticle Arrays , 2012 .

[170]  C. Powell,et al.  Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium , 1960 .

[171]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[172]  J. Creighton,et al.  Raman excitation profiles of adsorbates at roughened silver surfaces , 1981 .

[173]  B. Ren,et al.  Surface‐Enhanced Raman Spectroscopy (SERS): General Introduction , 2014 .

[174]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[175]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[176]  B. Parkinson,et al.  Surface-Enhanced Raman Spectroscopy in the Near-Infrared , 1988 .

[177]  G. Schatz,et al.  Many-body theory of surface-enhanced Raman scattering , 2008, 0809.3207.

[178]  Tobias J Kippenberg,et al.  Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. , 2014, Nature nanotechnology.

[179]  George C Schatz,et al.  Electronic structure methods for studying surface-enhanced Raman scattering. , 2008, Chemical Society reviews.

[180]  Zhong-Qun Tian,et al.  Density Functional Study and Normal-Mode Analysis of the Bindings and Vibrational Frequency Shifts of the Pyridine-M (M = Cu, Ag, Au, Cu+, Ag+, Au+, and Pt) Complexes , 2002 .

[181]  Alexei A Kornyshev,et al.  Self-assembled nanoparticle arrays for multiphase trace analyte detection. , 2013, Nature materials.

[182]  Peter Nordlander,et al.  Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance , 2014, Nature Communications.

[183]  Chad A. Mirkin,et al.  Designing, fabricating, and imaging Raman hot spots , 2006, Proceedings of the National Academy of Sciences.

[184]  H. Ueba,et al.  Raman scattering of adsorbed molecules , 1981 .

[185]  J. Creighton Contributions to the early development of surface-enhanced Raman spectroscopy , 2010, Notes and Records of the Royal Society.

[186]  F. Claro,et al.  Theory of surface enhanced Raman scattering in colloids , 1993 .

[187]  P. Nordlander,et al.  Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. , 2012, Nano letters.

[188]  N. P. Economou,et al.  Surface-enhanced raman scattering from microlithographic silver particle surfaces , 1981 .

[189]  O. Martin,et al.  Engineering the optical response of plasmonic nanoantennas. , 2008, Optics express.

[190]  A. Gewirth,et al.  Shell‐isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly) , 2012 .

[191]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[192]  P. Platzman,et al.  Raman scattering from chemisorbed molecules at surfaces , 1980 .

[193]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[194]  Benjamin Gallinet,et al.  Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials , 2011, 1105.2503.

[195]  A. Kuzume,et al.  CO Oxidation on Pt(100): New Insights based on Combined Voltammetric, Microscopic and Spectroscopic Experiments , 2014 .

[196]  James M Tour,et al.  Simultaneous measurements of electronic conduction and Raman response in molecular junctions. , 2008, Nano letters.

[197]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[198]  Eric C. Le Ru,et al.  Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects , 2008 .

[199]  Jinhuai Liu,et al.  A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state. , 2015, Chemical Society reviews.

[200]  M. Albrecht,et al.  Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength , 1979 .

[201]  R. Birke,et al.  The theory of surface-enhanced Raman scattering. , 2012, The Journal of chemical physics.

[202]  U. Kreibig,et al.  Surface plasma resonances in small spherical silver and gold particles , 1970 .

[203]  K. Crozier,et al.  High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering , 2012, Advanced materials.

[204]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[205]  M. Kerker Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids , 1984 .

[206]  George C Schatz,et al.  Ultrafast and nonlinear surface-enhanced Raman spectroscopy. , 2016, Chemical Society reviews.

[207]  T. Furtak,et al.  Nature of the active site in surface-enhanced Raman scattering , 1983 .

[208]  Michael Galperin,et al.  Photonics and spectroscopy in nanojunctions: a theoretical insight. , 2017, Chemical Society reviews.

[209]  M. Kerker,et al.  Resonances in electromagnetic scattering by objects with negative absorption. , 1979, Applied optics.

[210]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[211]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[212]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[213]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[214]  and H. Metiu,et al.  THE ELECTROMAGNETIC THEORY OF SURFACE ENHANCED SPECTROSCOPY , 1984 .

[215]  G. Schatz,et al.  The effect of randomly distributed surface bumps on local field enhancements in surface enhanced Raman spectroscopy , 1982 .

[216]  Joseph M. McLellan,et al.  Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes , 2006 .

[217]  Calculation of Surface‐Enhanced Raman Spectra Including Orientational and Stokes Effects Using TDDFT/Mie Theory QM/ED Method , 2014 .

[218]  L. Dick,et al.  Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss , 2002 .

[219]  L. Jensen,et al.  A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering. , 2014, Accounts of chemical research.

[220]  P. Etchegoin,et al.  On the connection between optical absorption/extinction and SERS enhancements. , 2006, Physical chemistry chemical physics : PCCP.

[221]  Raman Spectroscopy of Molecules Adsorbed on Solid Surfaces , 1985 .

[222]  Z. Tian,et al.  A theoretical and experimental approach to shell-isolated nanoparticle-enhanced Raman spectroscopy of single-crystal electrodes , 2015 .

[223]  S. Efrima Raman optical activity of molecules adsorbed on metal surfaces: Theory , 1985 .

[224]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[225]  T. Yang,et al.  Reproducible Ultrahigh Electromagnetic SERS Enhancement in Nanosphere-Plane Junctions , 2015, 1512.03507.

[226]  Shu Han Chen,et al.  Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration. , 2015, Optics express.

[227]  J. Baumberg,et al.  Observing Single Molecules Complexing with Cucurbit[7]uril through Nanogap Surface-Enhanced Raman Spectroscopy. , 2016, The journal of physical chemistry letters.

[228]  Gerhard Ertl,et al.  Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy , 2000 .

[229]  B. Pettinger,et al.  Surface plasmon enhanced Raman scattering frequency and angular resonance of Raman scattered light from pyridine on Au, Ag and Cu electrodes , 1980 .

[230]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[231]  P. K. Aravind,et al.  The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy , 1983 .

[232]  Maxim Sukharev,et al.  Optimal design of nanoplasmonic materials using genetic algorithms as a multiparameter optimization tool. , 2008, The Journal of chemical physics.

[233]  F. D. Sala,et al.  Handbook of Molecular Plasmonics , 2013 .

[234]  Mohamed A Swillam,et al.  Artificial neural network modeling of plasmonic transmission lines. , 2016, Applied optics.

[235]  Benjamin Gallinet,et al.  Relation between near-field and far-field properties of plasmonic Fano resonances. , 2011, Optics express.

[236]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[237]  Yi Luo,et al.  Visualization of Vibrational Modes in Real Space by Tip-Enhanced Non-Resonant Raman Spectroscopy. , 2016, Angewandte Chemie.

[238]  R. Birke,et al.  Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions , 1986 .

[239]  D. Dilella,et al.  Surface‐enhanced Raman spectroscopy of benzene and benzene‐d6 adsorbed on silver , 1980 .

[240]  Logan K. Ausman,et al.  Methods for describing the electromagnetic properties of silver and gold nanoparticles. , 2008, Accounts of chemical research.

[241]  Rui Zhang,et al.  Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. , 2015, Nature nanotechnology.

[242]  S. Lin,et al.  Theoretical differential Raman scattering cross-sections of totally-symmetric vibrational modes of free pyridine and pyridine-metal cluster complexes. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[243]  Shiuan-Yeh Chen,et al.  Quantitative Amplification of Cy5 SERS in ‘Warm Spots’ Created by Plasmonic Coupling in Nanoparticle Assemblies of Controlled Structure† , 2009 .

[244]  G. Schatz,et al.  Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. , 2010, 1008.2490.

[245]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[246]  Jian-Feng Li,et al.  In Situ Monitoring of Electrooxidation Processes at Gold Single Crystal Surfaces Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. , 2015, Journal of the American Chemical Society.

[247]  Guangyuan Li,et al.  Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. , 2013, ACS nano.

[248]  P. Platzman,et al.  Surface enhanced Raman scattering , 1980 .

[249]  Zeyu Lei,et al.  Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation , 2016, Scientific Reports.

[250]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[251]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .