Evolutionary algorithms converge towards evolved biological photonic structures

Nature features a plethora of extraordinary photonic architectures that have been optimized through natural evolution in order to more efficiently reflect, absorb or scatter light. While numerical optimization is increasingly and successfully used in photonics, it has yet to replicate any of these complex naturally occurring structures. Using evolutionary algorithms inspired by natural evolution and performing particular optimizations (maximize reflection for a given wavelength, for a broad range of wavelength or maximize the scattering of light), we have retrieved the most stereotypical natural photonic structures. Whether those structures are Bragg mirrors, chirped dielectric mirrors or the gratings on top of Morpho butterfly wings, our results indicate how such regular structures might have spontaneously emerged in nature and to which precise optical or fabrication constraints they respond. Comparing algorithms show that recombination between individuals, inspired by sexual reproduction, confers a clear advantage that can be linked to the fact that photonic structures are fundamentally modular: each part of the structure has a role which can be understood almost independently from the rest. Such an in silico evolution also suggests original and elegant solutions to practical problems, as illustrated by the design of counter-intuitive anti-reflective coatings for solar cells.

[1]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[2]  A. Parker,et al.  Aphrodite's iridescence , 2001 .

[3]  S Martin,et al.  Synthesis of optical multilayer systems using genetic algorithms. , 1995, Applied optics.

[4]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[5]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[6]  Bodo D Wilts,et al.  Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[8]  Shuichi Kinoshita,et al.  Phase-Adjusting Layers in the Multilayer Reflector of a Jewel Beetle , 2012 .

[9]  Jean-Pol Vigneron,et al.  Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera) , 2009, Journal of The Royal Society Interface.

[10]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[11]  Cheng-Yan Kao,et al.  An evolutionary algorithm for the synthesis of multilayer coatings at oblique light incidence , 2001 .

[12]  Carsten Rockstuhl,et al.  Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction , 2018, ACS Photonics.

[13]  Jesper Mørk,et al.  Maximizing the quality factor to mode volume ratio for ultra-small photonic crystal cavities , 2018, Applied Physics Letters.

[14]  O. Heavens Thin-film Optical Filters , 1986 .

[15]  Jakob S. Jensen,et al.  Topology optimization and fabrication of photonic crystal structures. , 2004, Optics express.

[16]  Shuichi Kinoshita,et al.  Structural colors in the realm of nature , 2008 .

[17]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[18]  Gordon E. Moore Lithography and the future of Moore's law , 1995, Advanced Lithography.

[19]  A. C. Neville,et al.  Metallic gold and silver colours in some insect cuticles , 1977 .

[20]  A. Tikhonravov,et al.  Optical coating design approaches based on the needle optimization technique. , 2007, Applied optics.

[21]  Ole Sigmund,et al.  Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. , 2016, Optics express.

[22]  木下 修一,et al.  Structural colors in the realm of nature , 2008 .

[23]  P. Lalanne,et al.  Highly improved convergence of the coupled-wave method for TM polarization and conical mountings , 1996, Diffractive Optics and Micro-Optics.

[24]  Hod Lipson,et al.  Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures. , 2006, Physical review letters.

[25]  S Enoch,et al.  Morpho butterflies wings color modeled with lamellar grating theory. , 2001, Optics express.

[26]  Brahim Guizal,et al.  Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization , 1996 .

[27]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[29]  Ole Sigmund,et al.  On the usefulness of non-gradient approaches in topology optimization , 2011 .

[30]  Cheng-Yan Kao,et al.  Optical Coating Designs Using the Family Competition Evolutionary Algorithm , 2001, Evolutionary Computation.

[31]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[32]  David Sell,et al.  Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries. , 2017, Nano letters.

[33]  R. Szipőcs,et al.  Theory and design of chirped dielectric laser mirrors , 1997 .

[34]  Matthew Hartfield,et al.  Current hypotheses for the evolution of sex and recombination. , 2012, Integrative zoology.

[35]  B. Shen,et al.  An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint , 2015, Nature Photonics.

[36]  D. Stavenga,et al.  Coloration mechanisms and phylogeny of Morpho butterflies , 2016, Journal of Experimental Biology.

[37]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[38]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[39]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[40]  Steven G. Johnson,et al.  Molding the flow of light , 2001, Comput. Sci. Eng..

[41]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[42]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[43]  D. Stavenga,et al.  The Japanese jewel beetle: a painter's challenge , 2013, Bioinspiration & biomimetics.

[44]  Echellette reflection grating,et al.  Diffraction Gratings , 1951, Nature.

[45]  Stéphane Larouche,et al.  OpenFilters: open-source software for the design, optimization, and synthesis of optical filters. , 2008, Applied optics.

[46]  R A Steinbrecht,et al.  Fine structure and development of the silver and golden cuticle in butterfly pupae. , 1985, Tissue & cell.

[47]  Bodo D Wilts,et al.  Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. , 2011, Optics express.

[48]  A. Tikhonravov,et al.  Application of the needle optimization technique to the design of optical coatings. , 1996, Applied optics.

[49]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[50]  J.,et al.  All-optical spatial light modulator for reconfigurable silicon photonic circuits , 2016, 1601.06679.

[51]  David R. Smith,et al.  Moosh: A Numerical Swiss Army Knife for the Optics of Multilayers in Octave/Matlab , 2016 .