Parametric Identification Using Weighted Null-Space Fitting

In identification of dynamical systems, the prediction error method with a quadratic cost function provides asymptotically efficient estimates under Gaussian noise, but in general it requires solving a nonconvex optimization problem, which may imply convergence to nonglobal minima. An alternative class of methods uses a nonparametric model as intermediate step to obtain the model of interest. Weighted null-space fitting (WNSF) belongs to this class, starting with the estimate of a nonparametric ARX model with least squares. Then, the reduction to a parametric model is a multistep procedure where each step consists of the solution of a quadratic optimization problem, which can be obtained with weighted least squares. The method is suitable for both open- and closed-loop data, and can be applied to many common parametric model structures, including output-error, ARMAX, and Box–Jenkins. The price to pay is the increase of dimensionality in the nonparametric model, which needs to tend to infinity as function of the sample size for certain asymptotic statistical properties to hold. In this paper, we conduct a rigorous analysis of these properties: namely, consistency, and asymptotic efficiency. Also, we perform a simulation study illustrating the performance of WNSF and identify scenarios where it can be particularly advantageous compared with state-of-the-art methods.

[1]  T. Söderström,et al.  The Steiglitz-McBride identification algorithm revisited--Convergence analysis and accuracy aspects , 1981 .

[2]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[3]  Petre Stoica,et al.  MIMO system identification: state-space and subspace approximations versus transfer function and instrumental variables , 2000, IEEE Trans. Signal Process..

[4]  L. Ljung,et al.  Prediction error estimators: Asymptotic normality and accuracy , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[5]  Håkan Hjalmarsson,et al.  A weighted least-squares method for parameter estimation in structured models , 2014, 53rd IEEE Conference on Decision and Control.

[6]  Petre Stoica,et al.  An indirect prediction error method for system identification , 1991, Autom..

[7]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .

[8]  David Q. Mayne,et al.  Linear identification of ARMA processes , 1982, Autom..

[9]  Christian Gourieroux,et al.  Statistics and econometric models , 1995 .

[10]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[11]  Magnus Jansson,et al.  Subspace Identification and ARX Modeling , 2003 .

[12]  B. Wahlberg Model reductions of high-order estimated models : the asymptotic ML approach , 1989 .

[13]  Yucai Zhu,et al.  Multivariable System Identification For Process Control , 2001 .

[14]  E. J. Hannan,et al.  Vector linear time series models , 1976, Advances in Applied Probability.

[15]  Lennart Ljung,et al.  Closed-Loop Subspace Identification with Innovation Estimation , 2003 .

[16]  E. J. Hannan,et al.  Linear estimation of ARMA processes , 1983, Autom..

[17]  GourierouxMonfort Statistics and Econometric Models, Volume 2 , 1996 .

[18]  Sabine Van Huffel,et al.  IQML-like algorithms for solving structured total least squares problems: a unified view , 2001, Signal Process..

[19]  J. Durbin EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .

[20]  Björn E. Ottersten,et al.  Sensor array processing based on subspace fitting , 1991, IEEE Trans. Signal Process..

[21]  Manfred Deistler,et al.  Statistical analysis of novel subspace identification methods , 1996, Signal Process..

[22]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[23]  Håkan Hjalmarsson,et al.  On estimating initial conditions in unstructured models , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[24]  Håkan Hjalmarsson,et al.  The Box-Jenkins Steiglitz-McBride algorithm , 2016, Autom..

[25]  Karl Johan Åström,et al.  Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1965 .

[26]  Mattia Zorzi,et al.  An interpretation of the dual problem of the THREE-like approaches , 2014, Autom..

[27]  Marion Gilson,et al.  Instrumental variable methods for closed-loop system identification , 2005, Autom..

[28]  Håkan Hjalmarsson,et al.  Open-loop asymptotically efficient model reduction with the Steiglitz-McBride method , 2018, Autom..

[29]  T. Söderström,et al.  Optimal instrumental variable estimation and approximate implementations , 1983 .

[30]  Donald Poskitt,et al.  ON THE RELATIONSHIP BETWEEN GENERALIZED LEAST SQUARES AND GAUSSIAN ESTIMATION OF VECTOR ARMA MODELS , 1995 .

[31]  Bo Wahlberg,et al.  A linear regression approach to state-space subspace system identification , 1996, Signal Process..

[32]  Gregory C. Reinsel,et al.  MAXIMUM LIKELIHOOD ESTIMATORS IN THE MULTIVARIATE AUTOREGRESSIVE MOVING‐AVERAGE MODEL FROM A GENERALIZED LEAST SQUARES VIEWPOINT , 1992 .

[33]  E. Hannan The asymptotic theory of linear time-series models , 1973, Journal of Applied Probability.

[34]  Jean-Marie Dufour,et al.  Asymptotic distributions for quasi-efficient estimators in echelon VARMA models , 2014, Comput. Stat. Data Anal..

[35]  Lennart Ljung,et al.  Closed-loop identification revisited , 1999, Autom..

[36]  Sun-Yuan Kung,et al.  A new identification and model reduction algorithm via singular value decomposition , 1978 .

[37]  James H. McClellan,et al.  Exact equivalence of the Steiglitz-McBride iteration and IQML , 1991, IEEE Trans. Signal Process..

[38]  W. Larimore System Identification, Reduced-Order Filtering and Modeling via Canonical Variate Analysis , 1983, 1983 American Control Conference.

[39]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[40]  Michel Verhaegen,et al.  Application of a subspace model identification technique to identify LTI systems operating in closed-loop , 1993, Autom..

[41]  Arnab K. Shaw,et al.  Identification of a class of multivariable systems from impulse response data: Theory and computational algorithm , 1994 .

[42]  Dietmar Bauer,et al.  Asymptotic properties of subspace estimators , 2005, Autom..

[43]  Lennart Ljung,et al.  On The Consistency of Prediction Error Identification Methods , 1976 .

[44]  A. Evans,et al.  Optimal least squares time-domain synthesis of recursive digital filters , 1973 .

[46]  E. J. Hannan,et al.  Multivariate linear time series models , 1984, Advances in Applied Probability.

[47]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[48]  Bo Wahlberg,et al.  Analyzing iterations in identification with application to nonparametric H∞-norm estimation , 2012, Autom..

[49]  V. Peller Hankel Operators and Their Applications , 2003, IEEE Transactions on Automatic Control.

[50]  Arnab K. Shaw Optimal identification of discrete-time systems from impulse response data , 1994, IEEE Trans. Signal Process..

[51]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[52]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[53]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[54]  James Durbin,et al.  The fitting of time series models , 1960 .

[55]  Håkan Hjalmarsson,et al.  Estimating models with high-order noise dynamics using semi-parametric weighted null-space fitting , 2017, Autom..

[56]  P. Young Unified estimation of discrete and continuous-time transfer function models , 2008 .

[57]  H. Hjalmarsson,et al.  Convergence and Variance Analysis of Semi-Parametric Weighted Null-Space Fitting , 2017 .

[58]  L. Ljung,et al.  Asymptotic properties of the least-squares method for estimating transfer functions and disturbance spectra , 1992, Advances in Applied Probability.

[59]  Alessandro Chiuso,et al.  Consistency analysis of some closed-loop subspace identification methods , 2005, Autom..