Population genetic structure and gene flow patterns between populations of the Antarctic icefish Chionodraco rastrospinosus

Aim  A lack of genetic structure is predicted for Antarctic fish due to the duration of pelagic larval stages and the strength of the currents in the Southern Ocean, particularly the Antarctic Circumpolar Current. In this study we explored the population structure of the ocellated icefish, Chionodraco rastrospinosus, by means of analysing a total of 394 individuals collected at four geographical areas off the Antarctic Peninsula in the period 1996–2006.

[1]  I. Everson,et al.  Testing early life connectivity using otolith chemistry and particle-tracking simulations , 2010 .

[2]  W. Salzburger,et al.  Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons , 2009, Molecular ecology.

[3]  L. Zane,et al.  Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands , 2009 .

[4]  G. Turner,et al.  The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species , 2009, Proceedings of the National Academy of Sciences.

[5]  Gary R. Carvalho,et al.  Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts , 2008 .

[6]  Gordon Luikart,et al.  LOSITAN: A workbench to detect molecular adaptation based on a Fst-outlier method , 2008, BMC Bioinformatics.

[7]  Christopher D. Jones,et al.  Diversity, relative abundance, new locality records and population structure of Antarctic demersal fishes from the northern Scotia Arc islands and Bouvetøya , 2008, Polar Biology.

[8]  M. Mesa,et al.  Age and growth of ocellated icefish, Chionodraco rastrospinosus DeWitt and Hureau, 1979, from the South Shetland Islands , 2008, Polar Biology.

[9]  J. Cotton,et al.  The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  A. Mackensen,et al.  Life hung by a thread: endurance of Antarctic fauna in glacial periods. , 2008, Ecology.

[11]  Christopher D. Jones,et al.  The biology of the spiny icefish Chaenodraco wilsoni Regan, 1914 , 2008, Polar Biology.

[12]  P. Gaffney,et al.  Population subdivision in the Antarctic toothfish (Dissostichus mawsoni) revealed by mitochondrial and nuclear single nucleotide polymorphisms (SNPs) , 2008, Antarctic Science.

[13]  T. Patarnello,et al.  Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break? , 2007, Molecular ecology.

[14]  J. Ashford,et al.  Age and early life history of juvenile scotia sea icefish, Chaenocephalus aceratus, from Elephant and the South Shetland Islands , 2007, Polar Biology.

[15]  L. Zane,et al.  Microsatellite analysis reveals genetic differentiation between year-classes in the icefish Chaenocephalus aceratus at South Shetlands and Elephant Island , 2007, Polar Biology.

[16]  A. Estoup,et al.  Microsatellite null alleles and estimation of population differentiation. , 2007, Molecular biology and evolution.

[17]  Jody Hey,et al.  Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics , 2007, Proceedings of the National Academy of Sciences.

[18]  Joseph I. Hoffman,et al.  Automated binning of microsatellite alleles: problems and solutions , 2006 .

[19]  L. Zane,et al.  Demographic history and population structure of the Antarctic silverfish Pleuragramma antarcticum , 2006, Molecular ecology.

[20]  S. Lebedev Interannual and Seasonal Variation of Axis Position and Intensity of the Antarctic Circumpolar Current by Satellite Altimetry , 2006 .

[21]  J. Klinck,et al.  Transport of Antarctic krill (Euphausia superba) across the Scotia Sea. Part I: Circulation and particle tracking simulations , 2006 .

[22]  O. Gaggiotti,et al.  INVITED REVIEW: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity , 2006, Molecular ecology.

[23]  P. Gaffney,et al.  Preliminary assessment of population structure in the mackerel icefish (Champsocephalus gunnari) , 2006, Polar Biology.

[24]  L. Hauser,et al.  Genetic structure of black abalone (Haliotis cracherodii) populations in the California islands and central California coast : Impacts of larval dispersal and decimation from withering syndrome , 2006 .

[25]  N. Ryman,et al.  chifish: a computer program testing for genetic heterogeneity at multiple loci using chi-square and Fisher's exact test , 2006 .

[26]  L. Zane,et al.  Isolation and characterization of microsatellite loci in the icefish Chionodraco rastrospinosus (Perciformes, Notothenioidea, Channichthyidae) , 2006 .

[27]  Mike Steel,et al.  Estimating the Relative Order of Speciation or Coalescence Events on a Given Phylogeny , 2006, Evolutionary bioinformatics online.

[28]  E. Morriconi,et al.  Somatic energy content and histological analysis of the gonads in Antarctic fish from the Scotia Arc , 2005 .

[29]  Marek Kimmel,et al.  simuPOP: a forward-time population genetics simulation environment , 2005, Bioinform..

[30]  K. Kock Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part I , 2005, Polar Biology.

[31]  Christopher D. Jones,et al.  Nesting behavior of the icefish Chaenocephalus aceratus at Bouvetøya Island, Southern Ocean , 2005, Polar Biology.

[32]  C. Oosterhout,et al.  Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data , 2004 .

[33]  E. Heyer,et al.  Geographic Patterns of (Genetic, Morphologic, Linguistic) Variation: How Barriers Can Be Detected by Using Monmonier's Algorithm , 2004, Human biology.

[34]  M. Brandon,et al.  Physical oceanography in the Scotia Sea during the CCAMLR 2000 survey, austral summer 2000 , 2004 .

[35]  J. Galindo‐Zaldívar,et al.  Contourite deposits in the central Scotia Sea: the importance of the Antarctic Circumpolar Current and the Weddell Gyre flows , 2003 .

[36]  L. Zane,et al.  Phylogeography of the Chionodraco genus (Perciformes, Channichthydae) in the Southern Ocean. , 2003, Molecular phylogenetics and evolution.

[37]  B. Victor,et al.  Larval spatial distributions and other early life–history characteristics predict genetic differentiation in eastern Pacific blennioid fishes , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  Peter Beerli,et al.  Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  E. Hofmann,et al.  Hydrography and circulation of the West Antarctic Peninsula Continental Shelf , 1999 .

[40]  M. Beaumont,et al.  Evaluating loci for use in the genetic analysis of population structure , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  J. Goudet FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics , 1995 .

[42]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[43]  D. Skibinski,et al.  A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes , 1994 .

[44]  I. Everson Antarctic Fish and Fisheries , 1991, Polar Record.

[45]  K. Kock,et al.  Reproduction in Antarctic notothenioid fish , 1991, Antarctic Science.

[46]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[47]  M Slatkin,et al.  Gene flow and the geographic structure of natural populations. , 1987, Science.

[48]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[49]  Motoo Kimura,et al.  A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population*. , 1973, Genetical research.

[50]  L. Cavalli-Sforza,et al.  PHYLOGENETIC ANALYSIS: MODELS AND ESTIMATION PROCEDURES , 1967, Evolution; international journal of organic evolution.

[51]  K. Kock Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part II , 2005, Polar Biology.

[52]  H. Hellmer,et al.  On the transport, variability and origin of dense water masses crossing the South Scotia Ridge , 2002 .

[53]  J. Klinck Antarctic Circumpolar Current , 2001 .

[54]  S. Palumbi,et al.  Biogeography: A marine Wallace's line? , 2000, Nature.

[55]  E. J.T.,et al.  Fishes on the Antarctic continental shelf : evolution of a marine species flock ? , 2000 .

[56]  C. ozouF-cosTaz,et al.  Allozymic Polymorphism and Phylogeny of the Family Channichthyidae , 1998 .

[57]  M. White Development, Dispersal and Recruitment: A Paradox for Survival Among Antarctic Fish , 1998 .

[58]  F. Bonhomme,et al.  GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. , 1996 .

[59]  A. North,et al.  Antarctic larval fish assemblages: a review , 1993 .

[60]  P. Koubbi,et al.  Antarctic larval fish assemblages: a review : Larval fish assemblages and oceanic boundaries , 1993 .

[61]  F. Shillington Oceanography of the Southern African region , 1986 .

[62]  V. Siegel Parasite tags for some Antarctic channichthyid fish. , 1980 .

[63]  K. Kock Fischereibiologische Untersuchungen an drei antarktischen Fischarten : Champsocephaulus gunnari Lönnberg, 1905, Chaenocephalus aceratus (Lönnberg, 1906) und Pseudochaenichthys georgianus Norman, 1937 (Notothenioidei, Channichthyidae) , 1980 .