Nucleosynthesis in classical novae

Abstract Classical novae are dramatic stellar explosions with an energy release that is only overcome by supernovae and gamma-ray bursts. These unique cataclysmic events constitute a crucible where different scientific disciplines merge, including astrophysics, nuclear and atomic physics, cosmochemistry, high-energy physics or computer science. In this review, we focus on the nucleosynthesis accompanying nova outbursts. Theoretical predictions are compared with the elemental abundances inferred from observations of the nova ejecta as well as with the isotopic abundance ratios measured in meteorites. Special emphasis is given to the interplay between nova outbursts and the Galactic abundance pattern and on the synthesis of radioactive nuclei for which γ-ray signals are expected. Finally, we analyze the key role played by nuclear physics in our understanding of the nova phenomenon by means of recent experiments and a thorough account of the impact of nuclear uncertainties.

[1]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[2]  M. Leising,et al.  Gamma-Ray Limits on Na-22 Production in Novae , 1988 .

[3]  W. Hillebrandt,et al.  Synthesis of Al-26 in explosive hydrogen burning , 1980 .

[4]  D. Prialnik The Evolution of a Classical Nova Model through a Complete Cycle , 1986 .

[5]  J. Truran,et al.  Hydrodynamic models for novae with ejecta rich in oxygen, neon and magnesium , 1986 .

[6]  R. Gehrz,et al.  Confirmation of dust condensation in the ejecta of supernova 1987a. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Orio,et al.  X-ray emission from classical and recurrent-novae observed with ROSAT , 2001 .

[8]  N. Vogt Viña del Mar Workshop on Cataclysmic Variable Stars , 1992 .

[9]  R. Gehrz,et al.  Nucleosynthesis in Classical Novae and Its Contribution to the Interstellar Medium , 1998 .

[10]  J. Truran,et al.  Hydrodynamic Studies of Accretion onto Massive White Dwarfs: ONeMg-enriched Nova Outbursts , 1995 .

[11]  J. José,et al.  On the Synthesis of 7Li and 7Be in Novae , 1996 .

[12]  P. Hauschildt,et al.  Dust formation in Nova Cassiopeiae 1993 seen by ultraviolet absorption , 1994, Nature.

[13]  Enrique García-Berro,et al.  On the Evolution of Stars That Form Electron-degenerate Cores Processed by Carbon Burning. II. Isotope Abundances and Thermal Pulses in a 10 M sun Model with an ONe Core and Applications to Long-Period Variables, Classical Novae, and Accretion-induced Collapse , 1996 .

[14]  F. Thielemann,et al.  Explosive hydrogen burning in novae , 1986 .

[15]  Sumner Starrfield,et al.  The effects of thermonuclear reaction rate variations on nova nucleosynthesis: a sensitivity study , 2002 .

[16]  G. Sala,et al.  A classical nova, V2487 Oph 1998, seen in x-rays before and after its explosion. , 2002, Science.

[17]  L. Bildsten,et al.  The Rapid Proton Process Ashes from Stable Nuclear Burning on an Accreting Neutron Star , 1999, astro-ph/9905274.

[18]  J. Truran,et al.  CNO abundances and hydrodynamic models of the nova outburst. II - 1.00 solar mass models with enhanced carbon and oxygen , 1974 .

[19]  Eli Livne,et al.  Reactive Flow in Nova Outbursts , 1997 .

[20]  Ernst K. Zinner,et al.  Astrophysical Implications of the Laboratory Study of Presolar Materials , 1997 .

[21]  M. Wiescher,et al.  7.07 MeV resonant state in 19Ne reexamined through a new measurement of the 18F(p,α)15O reaction and 18F(p,p) scattering , 2000 .

[22]  C. M. Cheves,et al.  Energy levels of light nuclei A = 18–19☆ , 1995 .

[23]  Margarita Hernanz Classical nova explosions , 2002 .

[24]  D. Prialnik,et al.  CNO abundances resulting from diffusion in accreting nova progenitors , 1985 .

[25]  J. S. Gallagher,et al.  Ultraviolet photometry from the Orbiting Astronomical Observatory. X - Nova FH Serpentis 1970 , 1974 .

[26]  A. Wuosmaa,et al.  Astrophysical rate of O-15(alpha,gamma)Ne-19 via the (p, t) reaction in inverse kinematics , 2003, nucl-ex/0303010.

[27]  P. Parker,et al.  Destruction of [Formula Presented] via [Formula Presented] burning through the [Formula Presented] keV resonance , 2001 .

[28]  M. Leising Hard emission from classical novae. , 1992 .

[29]  George Sonneborn,et al.  Optical and ultraviolet spectrophotometry of the ONeMg Nova V838 Herculis 1991 , 1996 .

[30]  J. José,et al.  Explosive hydrogen burning of 17O in classical novae. , 2004, Physical review letters.

[31]  D. J. Stickland,et al.  Nova Cygni 1978 – I. The nebular phase , 1981 .

[32]  J. José,et al.  γ-rays from classical novae: expectations from present and future missions , 2004 .

[33]  W. J. Thompson,et al.  Explosive Hydrogen Burning of 27Si, 31S, 35Ar, and 39Ca in Novae and X-Ray Bursts , 1999 .

[34]  J. Truran,et al.  Ultraviolet spectral evolution and heavy element abundances in Nova Austrinae 1981 , 1985 .

[35]  M. A. J. Snijders,et al.  Nova Aquilae 1982 , 1982 .

[36]  J. José,et al.  The Impact of the Chemical Stratification of White Dwarfs on the Classification of Classical Novae , 2003, astro-ph/0309451.

[37]  Paul,et al.  Astrophysical reaction rate for the 18F(p, alpha )15O reaction. , 1996, Physical review. C, Nuclear physics.

[38]  D. Branch,et al.  On the spatial distribution and occurrence rate of Galactic classical novae , 1997 .

[39]  J. Truran,et al.  The Effects of New Nuclear Reaction Rates and Opacities on Hydrodynamic Simulations of the Nova Outburst , 2000 .

[40]  Mario Livio,et al.  On the interpretation and implications of nova abundances: An abundance of riches or an overabundance of enrichments , 1994 .

[41]  J. José,et al.  Constraining Models of Classical Nova Outbursts with the Murchison Meteorite , 2003, Publications of the Astronomical Society of Australia.

[42]  W. Hix,et al.  Strength of the 18F(p, α)15O resonance at Ec.m. = 330 keV , 2002 .

[43]  A. Tornambe',et al.  On the Formation of O-Ne White Dwarfs in Metal-rich Close Binary Systems , 1993 .

[44]  R. K. Wallace,et al.  Explosive hydrogen burning , 1981 .

[45]  K. P. Jackson,et al.  Measurement of the 24 Mg(p,t) 22 Mg reaction and implications for the 21 Na(p,γ) 22 Mg stellar reaction rate , 2001 .

[46]  D. Prialnik,et al.  An extended grid of multicycle nova evolution models , 1995 .

[47]  J. Truran,et al.  Hot CNO-Ne cycle hydrogen burning: explosive hydrogen burning in novae. , 1979 .

[48]  J. José,et al.  Synthesis of Intermediate-Mass Elements in Classical Novae: From Si to Ca , 2001, astro-ph/0106418.

[49]  C. Iliadis,et al.  Investigation of the Na-23(p, gamma) Mg-24 and Na-23(p, alpha) Ne-20 reactions via (He-3, d) spectroscopy , 2004 .

[50]  Barcelona,et al.  Gamma‐ray emission from individual classical novae , 1998 .

[51]  M. Leising,et al.  Positron annihilation gamma rays from novae , 1987 .

[52]  B. Warner The Cataclysmic Variable Stars , 1996 .

[53]  M. Leventhal,et al.  A search for gamma-ray lines from Nova Cygni 1975, Nova Serpentis 1970, and the Crab Nebula , 1977 .

[54]  R. Vogelaar,et al.  Breakout from the hot CNO cycle: The 18 F(p,γ) vs 18 F(p,α) branching ratio , 1998 .

[55]  J. Truran,et al.  CARBON-BURNING NUCLEOSYNTHESIS AT CONSTANT TEMPERATURE. , 1969 .

[56]  G. Sonneborn,et al.  Elemental abundances for Nova LMC 1990#1 , 1999 .

[57]  S. Amari Presolar grains from novae: their isotopic ratios and radioactivities , 2002 .

[58]  J. Truran,et al.  CNO abundances and hydrodynamic studies of the Nova outburst. V - 1.00-solar-mass models with small mass envelopes , 1978 .

[59]  J. Truran,et al.  On Li-7 production in nova explosions , 1978 .

[60]  P. Leleux,et al.  The 18F(p,α) reaction and its astrophysical implications , 1997 .

[61]  W. Fowler,et al.  Thermalization of long-lived nuclear isomeric states under stellar conditions , 1980 .

[62]  C. Morisset,et al.  Evolution of the post-nova GQ MUS (Nova MUSCAE 1983). I. A photoionization model for the shell from 1984 to 1990. , 1996 .

[63]  M. Shara,et al.  Rapid Accretion and Hibernation in the Preoutburst History of Classical Novae , 1986 .

[64]  L. Pasquini,et al.  The evolution of Nova V382 Velorum 1999 , 2002, astro-ph/0205135.

[65]  D. M. Palmer,et al.  Transient Gamma Ray Spectrometer Measurements of Gamma-Ray Lines from Novae. I. Limits on the Positron Annihilation Line in Five Individual Novae , 2000 .

[66]  J. Truran,et al.  CNO abundances and hydrodynamic models of the nova outburst. III - 0.5 solar mass models with enhanced carbon, oxygen, and nitrogen , 1974 .

[67]  A. Cameron Origin of Anomalous Abundances of the Elements in Giant Stars. , 1955 .

[68]  F. Hoyle,et al.  Gamma-ray lines from novae , 1974 .

[69]  D. Prialnik,et al.  The Composition of Nova Ejecta from Multicycle Evolution Models , 1997 .

[70]  J. Hackwell,et al.  Dust formation around HD 193793 , 1979 .

[71]  J. José,et al.  Nucleosynthesis in Classical Novae: CO versus ONe White Dwarfs , 1997, astro-ph/9709153.

[72]  J. José,et al.  Nuclear Uncertainties in the NeNa-MgAl Cycles and Production of 22Na and 26Al during Nova Outbursts , 1999, astro-ph/9902357.

[73]  Mario Livio,et al.  On the nova rate in the Galaxy , 1993 .

[74]  William A. Mahoney,et al.  Diffuse galactic gamma-ray line emission from nucleosynthetic Fe-60, Al-26, and Na-22 - Preliminary limits from HEAO 3 , 1982 .

[75]  J. José,et al.  Does an NeNa Cycle Exist in Explosive Hydrogen Burning? , 2004 .

[76]  Mariko Kato,et al.  Optically thick winds and nova outbursts , 1994 .

[77]  K. Nomoto,et al.  Nucleosynthesis in ONeMg Novae: Models versus Observations to Constrain the Masses of ONeMg White Dwarfs and Their Envelopes , 1999, astro-ph/9905279.

[78]  E. Harley,et al.  Studies of weak capture-γ-ray resonances via coincidence techniques , 2002 .

[79]  C. Iliadis Proton single-particle reduced widths for unbound states , 1997 .

[80]  M. Shara,et al.  The evolution of a fast nova model with a Z = 0.03 envelope from pre-explosion to decline. , 1979 .

[81]  L. Bildsten,et al.  Theoretical Modeling of the Thermal State of Accreting White Dwarfs Undergoing Classical Nova Cycles , 2004 .

[82]  R. Diehl,et al.  COMPTEL observations of Galactic ^26^Al emission. , 1995 .

[83]  J. Rogers,et al.  TheNa21(p,γ)Mg22reaction fromEc.m.=200to1103keVin novae and x-ray bursts , 2004 .

[84]  J. Truran,et al.  A hydrodynamic study of a slow nova outburst. [computerized simulation of thermonuclear runaway in white dwarf envelope] , 1978 .

[85]  J. Truran,et al.  A prediction of the gamma-ray flux from Nova Herculis 1991 , 1992 .

[86]  George Sonneborn,et al.  V1974 cygni 1992: Optical and ultraviolet evolution and analysis , 1996 .

[87]  N. Gehrels,et al.  Transient Gamma-Ray Spectrometer Observations of Gamma-Ray Lines from Novae. III. The 478 keV Line from 7Be Decay , 2001 .

[88]  Eli Livne,et al.  Convective Hydrogen Burning during a Nova Outburst , 1995 .

[89]  J. Truran,et al.  Three-dimensional simulations of classical novae , 1998, astro-ph/9811259.

[90]  Andreu Alibés,et al.  Galactic Cosmic Rays from Superbubbles and the Abundances of Lithium, Beryllium, and Boron , 2002, astro-ph/0202097.

[91]  W. Hillebrandt,et al.  Nucleosynthesis in novae - A source of Ne-E and Al-26 , 1982 .

[92]  G. Shaviv,et al.  The formation of Al-26 in nova explosions , 1991 .

[93]  L. Bildsten,et al.  The Endpoint of the rp process on accreting neutron stars , 2001 .

[94]  A. Shafter,et al.  On the Nova Rate in the Galaxy , 1997 .

[95]  J. MacDonald CNO abundances and the strengths of nova outbursts and hydrogen flashes on accreting white dwarfs. , 1983 .

[96]  E. Garcia-Berro,et al.  The frequency of occurrence of novae hosting an ONe white dwarf , 2003, astro-ph/0306197.

[97]  M. Della Valle,et al.  The Extraordinary X-ray Light Curve of the Classical Nova V1494 Aquilae (1999 No. 2) in Outburst: The Discovery of Pulsations and a “Burst” , 2002, astro-ph/0210072.

[98]  S. Starrfield,et al.  Elemental abundances for Nova V693 Coronae Austrinae 1981 , 1997 .

[99]  F. Hoyle,et al.  Grains of anomalous isotopic composition from novae , 1976 .

[100]  W. J. Thompson,et al.  Error analysis for resonant thermonuclear reaction rates , 1999 .

[101]  J. Truran,et al.  CNO abundances and hydrodynamic models of the nova outburst. , 1972 .

[102]  W. Mahoney,et al.  HEAO 3 discovery of Al-26 in the interstellar medium , 1984 .

[103]  W. J. Thompson,et al.  Proton-induced Thermonuclear Reaction Rates for A = 20–40 Nuclei , 2001 .

[104]  The contribution of O-Ne-Mg novae to the 26 Al production in the Galaxy , 1997 .

[105]  J. Truran,et al.  Evolutionary sequences for Nova V1974 Cygni using new nuclear reaction rates and opacities , 1998 .

[106]  J. José,et al.  Gamma-Ray Emission from Novae Related to Positron Annihilation: Constraints on its Observability Posed by New Experimental Nuclear Data , 1999, The Astrophysical journal.

[107]  Mario Livio,et al.  The Calibration of Novae as Distance Indicators , 1995 .

[108]  J. Rogers,et al.  The DRAGON facility for nuclear astrophysics at TRIUMF-ISAC: design, construction and operation , 2003 .

[109]  N. Chugai,et al.  Synthesis of radioactive isotopes and gamma radiation in nova outbursts , 2000 .