Slope constrained material design

We investigate a class of constrained inverse homogenization problems. The complexity of the topological solution is restricted using slope constraint regularization. We show existence of the solution for the inverse optimization problem in function space and outline a converging approximation scheme. We demonstrate how a proper numerical implementation can lead to a stable material design approach. We finally describe results for a comprehensive set of numerical test cases.

[1]  Frithiof I. Niordson,et al.  Optimal design of elastic plates with a constraint on the slope of the thickness function , 1983 .

[2]  Ivan Hlaváček,et al.  Optimal control of a variational inequality with applications to structural analysis. II. Local optimization of the stress in a beam. III. Optimal design of an elastic plate , 1985 .

[3]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[4]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[5]  G. Buttazzo,et al.  An optimal design problem with perimeter penalization , 1993 .

[6]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[7]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[8]  J. Haslinger,et al.  Finite Element Approximation for Optimal Shape, Material and Topology Design , 1996 .

[9]  C. S. Jog,et al.  Stability of finite element models for distributed-parameter optimization and topology design , 1996 .

[10]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[11]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[12]  J. Petersson,et al.  Slope constrained topology optimization , 1998 .

[13]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[14]  A. Cherkaev Variational Methods for Structural Optimization , 2000 .

[15]  O. Sigmund A new class of extremal composites , 2000 .

[16]  M. Zhou,et al.  Checkerboard and minimum member size control in topology optimization , 2001 .

[17]  B. Bourdin Filters in topology optimization , 2001 .

[18]  T. E. Bruns,et al.  Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .

[19]  T. Borrvall Topology optimization of elastic continua using restriction , 2001 .

[20]  Christian Zillober,et al.  SCPIP – an efficient software tool for the solution of structural optimization problems , 2002 .

[21]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[22]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[23]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[24]  Grégoire Allaire Conception optimale de structures , 2007 .

[25]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[26]  Manfred Kaltenbacher,et al.  Advanced simulation tool for the design of sensors and actuators , 2010 .

[27]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[28]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .