Interplay between Reaction and Phase Behaviour in Carbon Dioxide Hydrogenation to Methanol.

Condensation promotes CO2 hydrogenation to CH3 OH beyond equilibrium through in situ product separation. Although primordial for catalyst and reactor design, triggering conditions as well as the impact on sub-equilibrium reaction behaviour remain unclear. Herein we used an in-house designed micro-view-cell to gain chemical and physical insights into reaction and phase behaviour under high-pressure conditions over a commercial Cu/ZnO/Al2 O3 catalyst. Raman microscopy and video monitoring, combined with online gas chromatography analysis, allowed the complete characterisation of the reaction bulk up to 450 bar (1 bar=0.1 MPa) and 350 °C. Dew points of typical effluent streams related to a parametric study suggest that the improving reaction performance and reverting selectivities observed from 230 °C strongly correlate with (i) a regime transition from kinetic to thermodynamic, and (ii) a phase transition from a single supercritical to a biphasic reaction mixture. Our results advance a rationale behind transitioning CH3 OH selectivities for an improved understanding of CO2 hydrogenation under high pressure.

[1]  G. Maurer,et al.  Experimental investigation of the multiphase high-pressure equilibria of carbon dioxidewater(1-propanol) , 1997 .

[2]  V. Ipatieff,et al.  Synthesis of Methanol from Carbon Dioxide and Hydrogen over Copper-Alumina Catalysts. Mechanism of Reaction , 1945 .

[3]  Atsushi Urakawa,et al.  Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products , 2014 .

[4]  Manos Mavrikakis,et al.  Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation , 2011 .

[5]  D. Veirs,et al.  Raman line positions in molecular hydrogen: H2, HD, HT, D2, DT, and T2 , 1987 .

[6]  M. Arai,et al.  AN IN SITU RAMAN SPECTROSCOPY STUDY OF SUBCRITICAL AND SUPERCRITICAL WATER: THE PECULIARITY OF HYDROGEN BONDING NEAR THE CRITICAL POINT , 1998 .

[7]  M. Duduković,et al.  Optical Fiber Reflectance Probe for Detection of Phase Transitions in Multiphase Systems , 2014 .

[8]  K. Tödheide,et al.  Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid–Wasser bis zu Drucken von 3500 bar , 1963 .

[9]  S. Takenouchi,et al.  The binary system H 2 O-CO 2 at high temperatures and pressures , 1964 .

[10]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[11]  A. Urakawa,et al.  High pressure plant for heterogeneous catalytic CO2 hydrogenation reactions in a continuous flow microreactor , 2013 .

[12]  G. Walrafen,et al.  Raman Spectral Studies of the Effects of Temperature on Water Structure , 1967 .

[13]  M. Ito,et al.  Effects of hydrogen bonding on the Raman intensities of methanol, ethanol and water , 1978 .

[14]  Carl Eklund,et al.  National Institute for Standards and Technology , 2009, Encyclopedia of Biometrics.

[15]  Bala Subramaniam,et al.  In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions , 2007 .

[16]  R. W. Rousseau,et al.  Methanol synthesis reactions: calculations of equilibrium conversions using equations of state , 1986 .

[17]  M. Bañares Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions , 2005 .

[18]  Klavs F. Jensen,et al.  Microfabricated multiphase packed-bed reactors : Characterization of mass transfer and reactions , 2001 .

[19]  Donghai Mei,et al.  Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: The source of C in methanol and the role of water , 2013 .

[20]  S. Longelin,et al.  Local density enhancement in supercritical carbon dioxide studied by Raman spectroscopy. , 2007, The journal of physical chemistry. A.

[21]  J. Grunwaldt,et al.  High pressure view-cell for simultaneous in situ infrared spectroscopy and phase behavior monitoring of multiphase chemical reactions , 2003 .

[22]  R. P. Stateva,et al.  Phase Equilibrium Calculations for Chemically Reacting Systems , 1997 .

[23]  Qiming Zhu,et al.  In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst , 1998 .

[24]  C. Wai,et al.  UV-Visible Spectroscopic Measurement of Solubilities in Supercritical CO(2) Using High-Pressure Fiber-Optic Cells. , 1998, Analytical chemistry.

[25]  Javier Pérez-Ramírez,et al.  New and revisited insights into the promotion of methanol synthesis catalysts by CO2 , 2013 .

[26]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[27]  G. Centi,et al.  Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries , 2013 .

[28]  M. Poliakoff,et al.  Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process , 1998 .

[29]  J. G. V. Bennekom,et al.  Modeling and Experimental Studies on Phase and Chemical Equilibria in High-Pressure Methanol Synthesis , 2012 .

[30]  Malte Behrens,et al.  Heterogeneous catalysis of CO₂ conversion to methanol on copper surfaces. , 2014, Angewandte Chemie.

[31]  H. Bakker,et al.  Temperature dependence of vibrational relaxation in liquid H2O , 2002 .

[32]  C. Ratcliffe,et al.  Vibrational spectral studies of solutions at elevated temperatures and pressures. 5. Raman studies of liquid water up to 300.degree.C , 1982 .

[33]  Aage Fredenslund,et al.  Calculation of simultaneous chemical and phase equilibria in nonideal systems , 1989 .

[34]  J. Seader,et al.  Homotopy continuation method in multi-phase multi-reaction equilibrium systems , 1999 .

[35]  S. Montero Raman intensities of Fermi diads. I. Overtones in resonance with nondegenerate fundamentals , 1983 .

[36]  D. Fischer,et al.  Vibrational Spectroscopic Studies and Density Functional Theory Calculations of Speciation in the CO2—Water System , 2006, Applied Spectroscopy.

[37]  G. Chinchen,et al.  Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of14C-labelled reactants , 1987 .

[38]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[39]  M. Behrens CO2‐Umsetzung zu Methanol über Kupferkatalysatoren , 2014 .

[40]  E. F. Barker,et al.  The Infrared Spectrum of Heavy Water , 1935 .

[41]  Jun Yue,et al.  Integration of Microreactors with Spectroscopic Detection for Online Reaction Monitoring and Catalyst Characterization , 2012 .

[42]  Nicolas Kalogerakis,et al.  A method for the simultaneous phase equilibria and stability calculations for multiphase reacting and non-reacting systems , 1991 .

[43]  Robert Schlögl,et al.  The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu‐Based Catalysts , 2015 .

[44]  R. W. Larsen,et al.  A combined Raman- and infrared jet study of mixed methanol-water and ethanol-water clusters. , 2011, Physical chemistry chemical physics : PCCP.

[45]  E. Brunner,et al.  Fluid mixtures at high pressures IV. Isothermal phase equilibria in binary mixtures consisting of (methanol + hydrogen or nitrogen or methane or carbon monoxide or carbon dioxide) , 1987 .

[46]  G. A. Olah Jenseits von Öl und Gas: die Methanolwirtschaft , 2005 .

[47]  J. Grunwaldt,et al.  In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure. , 2005, Physical chemistry chemical physics : PCCP.

[48]  J. G. V. Bennekom,et al.  Methanol synthesis beyond chemical equilibrium , 2013 .

[49]  A. Avami,et al.  A simultaneous method for phase identification and equilibrium calculations in reactive mixtures , 2011 .

[50]  M. Bertau,et al.  Methanol: The Basic Chemical and Energy Feedstock of the Future , 2014 .

[51]  Shiv k. Sharma,et al.  Raman spectra of methanol and ethanol at pressures up to 100 kbar , 1980 .

[52]  Yuanqin Yu,et al.  Complete Raman spectral assignment of methanol in the C-H stretching region. , 2013, The journal of physical chemistry. A.

[53]  Alfons Baiker,et al.  Supercritical Fluids in Heterogeneous Catalysis. , 1999, Chemical reviews.

[54]  Atsushi Urakawa,et al.  CO2 hydrogenation to methanol at pressures up to 950bar , 2013 .

[55]  D. Brilman,et al.  A novel condensation reactor for efficient CO2 to methanol conversion for storage of renewable electric energy , 2015 .

[56]  Geoffrey R Akien,et al.  Detecting phase transitions in supercritical mixtures: an enabling tool for greener chemical reactions , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.