Group divisible designs with block size four and group type gum1 for small g

Abstract Non-uniform group divisible designs are instrumental in the constructions for other types of designs. Most of the progress for the existence of { 4 } -GDDs of type g u m 1 is on the case when g u is even, where the existence for small g has played a key role. In order to determine the spectrum for { 4 } -GDDs of type g u m 1 with g u being odd, we continue to investigate the small cases with g ∈ { 7 , 9 , 21 } in this paper. We show that, for each g ∈ { 7 , 9 , 21 } , the necessary conditions for the existence of a { 4 } -GDD of type g u m 1 are also sufficient. As the applications of these GDDs, we obtain a few pairwise balanced designs with minimum block size 4. Meanwhile, we also improve the existence result for frame self-orthogonal Mendelsohn triple systems of type h n by reducing an infinite class of possible exceptions, namely n = 9 and h ≡ 2 mod 6 , to eight undetermined cases.

[1]  Charles J. Colbourn,et al.  The existence of uniform 5‐GDDs , 1997 .

[2]  Hao Shen,et al.  Resolvable Maximum Packings with Quadruples , 2005, Des. Codes Cryptogr..

[3]  Rolf S. Rees,et al.  On the existence of nearly Kirkman triple systems with subsystems , 2003, Electron. Notes Discret. Math..

[4]  Gennian Ge,et al.  Group Divisible Designs with Block Size Four and Group Type gum1 with Minimum m , 2005, Des. Codes Cryptogr..

[5]  Rolf S. Rees,et al.  Two new direct product-type constructions for resolvable group-divisible designs , 1993 .

[6]  Gennian Ge,et al.  Some more 5-GDDs and optimal (v), 5, 1)-packings , 2004 .

[7]  Jean-Claude Bermond,et al.  Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3 , 2003, Networks.

[8]  Donald L. Kreher,et al.  A note on {4}-GDDs of type 210 , 2003, Discret. Math..

[9]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[10]  Douglas R. Stinson,et al.  Frames for Kirkman triple systems , 1987, Discret. Math..

[11]  Clement W. H. Lam,et al.  Resolvable group divisible designs with block size four and group size six , 2003, Discret. Math..

[12]  Gennian Ge,et al.  Asymptotic results on the existence of 4‐RGDDs and uniform 5‐GDDs , 2005 .

[13]  Frank E. Bennett,et al.  Some results on (v,{5,w*})‐pbds , 1995 .

[14]  Gennian Ge,et al.  Mandatory representation designs MRD({4, k};v) with k=1 mod 3 , 2004, Discret. Math..

[15]  Douglas R. Stinson,et al.  Frames with Block Size Four , 1992, Canadian Journal of Mathematics.

[16]  Charles J. Colbourn,et al.  Modified group divisible designs with block size four , 2000, Discret. Math..

[17]  Ahmed M. Assaf,et al.  Modified group divisible designs with block size 4 and λ>1 , 1999, Australas. J Comb..

[18]  Gennian Ge,et al.  Existence of (v, {5, wstar}, 1)-PBDs , 2004, Discret. Math..

[19]  Jiaying Shen,et al.  Existence of resolvable group divisible designs with block size four I , 2002, Discret. Math..

[20]  Gennian Ge Resolvable group divisible designs with block size four , 2002, Discret. Math..

[21]  Alan Hartman,et al.  Resolvable group divisible designs with block size 3 , 1989, Discret. Math..

[22]  Gennian Ge,et al.  Constructions of Quad-Rooted Double Covers , 2005, Graphs Comb..

[23]  Gennian Ge,et al.  MGDD with block size 4 and its application to sampling designs , 2003, Discret. Math..

[24]  Katherine Heinrich,et al.  INCOMPLETE SELF-ORTHOGONAL LATIN SQUARES , 1987 .

[25]  Gennian Ge,et al.  Group-Divisible Designs with Block Size Four and Group-Type gum1 with m as Large or as Small as Possible , 2002, J. Comb. Theory, Ser. A.

[26]  Dean G. Hoffman,et al.  A New Class of Group Divisible Designs with Block Size Three , 1992, J. Comb. Theory, Ser. A.

[27]  Lie Zhu,et al.  Existence of frame SOLS of type anb1 , 2002, Discret. Math..

[28]  Alan C. H. Ling,et al.  A survey on resolvable group divisible designs with block size four , 2004, Discret. Math..

[29]  R. Julian R. Abel,et al.  On the Closure of Subsets of {4, 5, ..., 9} which contain {4} , 1997, Ars Comb..

[30]  Gennian Ge,et al.  HGDDs with block size four , 2004, Discret. Math..

[31]  Richard M. Wilson,et al.  On resolvable designs , 1972, Discret. Math..

[32]  Hao Shen On the Existence of Nearly Kirkman Systems , 1992 .

[33]  Gennian Ge,et al.  On group-divisible designs with block size four and group-type 6um1 , 2004, Discret. Math..

[34]  Douglas R. Stinson,et al.  On combinatorial designs with subdesigns , 1989, Discret. Math..

[35]  Walter D. Wallis,et al.  Kirkman triple systems and their generalizations: a survey , 2003 .

[36]  Hanfried Lenz,et al.  Design theory , 1985 .

[37]  Rolf S. Rees,et al.  Group‐divisible designs with block size k having k + 1 groups, for k = 4, 5 , 2000 .

[38]  Hao Shen,et al.  Further results on nearly Kirkman triple systems with subsystems , 2003, Discret. Math..

[39]  R. Julian R. Abel,et al.  Some progress on (v, 4, 1) difference families and optical orthogonal codes , 2004, J. Comb. Theory, Ser. A.

[40]  G. Ge,et al.  On Group-Divisible Designs with Block Size Four and Group-Type gum1 , 2002, Des. Codes Cryptogr..

[41]  Hao Shen,et al.  On the existence and application of incomplete nearly Kirkman triple systems with a hole of size 6 or 12 , 2003, Discret. Math..