Segmented Contracted Douglas-Kroll-Hess Adapted Basis Sets for Lanthanides.

Segmented contracted scalar-relativistic (23s16p12d6f)/[18s12p9d3f] all-electron basis sets for lanthanides La-Lu primarily for use in second-order Douglas-Kroll-Hess density functional calculations are presented. Atomic test calculations at the scalar-relativistic Hartree-Fock level reveal an accurate description of the first to fourth ionization potentials as well as low-energy d-f and d-p excitation energies; i.e., reference data obtained with optimized (34s28p22d16f) even-tempered basis sets are reproduced with mean absolute errors of 0.003 (IP1), 0.013 (IP2), 0.030 (IP3), 0.098 (IP4), 0.070 (d-f), and 0.018 (d-p) eV. Results of molecular test calculations are presented for the lanthanide trihalides LnX3 (Ln = La-Lu, X = F, Cl, Br, I) at the PBE0 hybrid density functional theory level. Compared to recently published basis sets of identical size, the sets proposed here show substantially smaller errors in the atomic test calculations as well as lower total energies and produce results of similar accuracy in the molecular calibration study.

[1]  Guntram Rauhut,et al.  Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .

[2]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[3]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[4]  Thomas R. Cundari,et al.  Effective core potential methods for the lanthanides , 1993 .

[5]  Michael Dolg,et al.  Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO , 2000 .

[6]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[7]  Wenjian Liu,et al.  Fully relativistic density functional calculations of the ground and excited states of Yb, YbH, YbF, and YbO , 1998 .

[8]  Michael Dolg,et al.  Pseudopotential Study on Rare Earth Dihalides and Trihalides , 1991 .

[9]  Wenjian Liu,et al.  A small-core multiconfiguration Dirac–Hartree–Fock-adjusted pseudopotential for Tl – application to TlX (X = F, Cl, Br, I) , 2000 .

[10]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[11]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for the Lanthanides. , 2009, Journal of chemical theory and computation.

[12]  Michael Dolg,et al.  Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt. , 2009, The Journal of chemical physics.

[13]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[14]  G. Lanza,et al.  On the effect of 4f electrons on the structural characteristics of lanthanide trihalides: computational and electron diffraction study of dysprosium trichloride. , 2008, The Journal of chemical physics.

[15]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[16]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[17]  Magdolna Hargittai,et al.  Prediction of the Molecular Shape of Lanthanide Trihalides , 1995 .

[18]  J. Sievers Asphericity of 4f-shells in their Hund's rule ground states , 1982 .

[19]  T. Tsuchiya,et al.  Accurate relativistic Gaussian basis sets for H through Lr determined by atomic self-consistent field calculations with the third-order Douglas–Kroll approximation , 2001 .

[20]  Eisaku Miyoshi,et al.  Relativistic correlating basis sets for lanthanide atoms from Ce to Lu , 2006, J. Comput. Chem..

[21]  E. Baerends,et al.  Atomic reference energies for density functional calculations , 1997 .

[22]  F. E. Jorge,et al.  Accurate universal Gaussian basis set for all atoms of the Periodic Table , 1998 .

[23]  Masahiro Sekiya,et al.  Relativistic correlating basis sets for 57La and 89Ac , 2009, J. Comput. Chem..

[24]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[25]  Frederick R. Manby,et al.  Fast Hartree–Fock theory using local density fitting approximations , 2004 .

[26]  P. Knowles,et al.  Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions , 2000 .

[27]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the rare earth elements , 1989 .

[28]  Pekka Pyykkö,et al.  Relativistic Quantum Chemistry , 1978 .

[29]  M. Hargittai The molecular geometry of gas-phase metal halides , 1988 .

[30]  K. Hirao,et al.  The Douglas-Kroll-Hess approach. , 2012, Chemical reviews.

[31]  M. Dolg,et al.  Accurate relativistic small-core pseudopotentials for actinides. energy adjustment for uranium and first applications to uranium hydride. , 2009, The journal of physical chemistry. A.

[32]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[33]  Roland Lindh,et al.  New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. , 2008, The journal of physical chemistry. A.

[34]  Laurent Joubert,et al.  Structural and Thermochemical ab Initio Studies of Lanthanide Trihalide Molecules with Pseudopotentials , 1998 .

[35]  Bernd A. Hess,et al.  Revision of the Douglas-Kroll transformation. , 1989, Physical review. A, General physics.

[36]  C. Myers Covalent bonding in lanthanide trihalides , 1975 .

[37]  M. Dolg,et al.  Segmented contraction scheme for small-core lanthanide pseudopotential basis sets , 2002 .

[38]  J. Flament,et al.  Multiconfiguration Dirac-Hartree-Fock adjusted energy-consistent pseudopotential for uranium: spin-orbit configuration interaction and Fock-space coupled-cluster study of U4+ and U5+. , 2009, The journal of physical chemistry. A.

[39]  Carlo Adamo,et al.  A Theoretical Study of Bonding in Lanthanide Trihalides by Density Functional Methods , 1998 .

[40]  K. Hirao,et al.  Accurate relativistic Gaussian basis sets determined by the third-order Douglas–Kroll approximation with a finite-nucleus model , 2002 .

[41]  M. Dolg ACCURACY OF ENERGY-ADJUSTED QUASIRELATIVISTIC PSEUDOPOTENTIALS : A CALIBRATION STUDY OF XH AND X2 (X = F, CL, BR, I, AT) , 1996 .

[42]  Attila Kovács,et al.  Structure and Vibrations of Lanthanide Trihalides. An Assessment of Experimental and Theoretical Data. , 2004 .

[43]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[44]  Michael Dolg,et al.  Quasirelativistic f-in-core pseudopotentials and core-polarization potentials for trivalent actinides and lanthanides: molecular test for trifluorides , 2010 .

[45]  F. E. Jorge,et al.  A universal Gaussian basis set for atoms cerium through lawrencium generated with the generator coordinate Hartree–Fock method , 1997 .

[46]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[47]  Michael Dolg,et al.  Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. , 2007, The Journal of chemical physics.

[48]  B. Silvi,et al.  Topological approach in the structural and bonding characterization of lanthanide trihalide molecules , 2000 .

[49]  H. Mori,et al.  CASSCF and CASPT2 calculations for lanthanide trihalides LnX3 using model core potentials , 2009 .

[50]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[51]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[52]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .