Balanced truncation model reduction for symmetric second order systems - A passivity-based approach

We introduce a model reduction approach for linear time-invariant second order systems based on positive real balanced truncation. Our method guarantees asymptotic stability and passivity of the reduced order model as well as the positive definiteness of the mass and stiffness matrices. Moreover, we receive an a priori gap metric error bound. Finally, we show that our method based on positive real balanced truncation preserves the structure of overdamped second order systems.

[1]  Françoise Tisseur,et al.  Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification☆ , 2012 .

[2]  Stochastic balancing and approximation - Stability and minimality , 1983 .

[3]  T. Georgiou,et al.  Optimal robustness in the gap metric , 1990 .

[4]  Paul Van Dooren,et al.  Robust port-Hamiltonian representations of passive systems , 2018, Autom..

[5]  Leiba Rodman,et al.  Spectral analysis of selfadjoint matrix polynomials , 1980 .

[6]  Peter Lancaster,et al.  On the Inverse Symmetric Quadratic Eigenvalue Problem , 2014, SIAM J. Matrix Anal. Appl..

[7]  Brian D. O. Anderson,et al.  Network Analysis and Synthesis: A Modern Systems Theory Approach , 2006 .

[8]  Avraham Feintuch Robust Stabilization in the Gap Metric , 1998 .

[9]  Zhaojun Bai,et al.  Dimension Reduction of Large-Scale Second-Order Dynamical Systems via a Second-Order Arnoldi Method , 2005, SIAM J. Sci. Comput..

[10]  Jan C. Willems,et al.  A balancing approach to the realization of systems with internal passivity and reciprocity , 2011, Syst. Control. Lett..

[12]  D. G. Meyer,et al.  Balancing and model reduction for second-order form linear systems , 1996, IEEE Trans. Autom. Control..

[13]  G. M. L. Gladwell Isospectral Vibrating Systems , 2006 .

[14]  Peter Benner,et al.  Efficient balancing-based MOR for large-scale second-order systems , 2011 .

[15]  Thomas Wolf,et al.  ℌ2 and ℌ∞ error bounds for model order reduction of second order systems by Krylov subspace methods , 2013, 2013 European Control Conference (ECC).

[16]  U. Desai,et al.  A realization approach to stochastic model reduction and balanced stochastic realizations , 1982, 1982 21st IEEE Conference on Decision and Control.

[17]  Leiba Rodman,et al.  Matrices and indefinite scalar products , 1983 .

[18]  Timo Reis,et al.  Balanced truncation model reduction of second-order systems , 2008 .

[19]  D. Meyer,et al.  A connection between normalized coprime factorizations and linear quadratic regulator theory , 1987 .

[20]  I. Postlethwaite,et al.  Truncated balanced realization of a stable non-minimal state-space system , 1987 .

[21]  P. Lancaster Isospectral vibrating systems. Part 1. The spectral method , 2005 .

[22]  F. R. Gantmakher The Theory of Matrices , 1984 .

[23]  Amol Sasane,et al.  Equivalence of a behavioral distance and the gap metric , 2006, Syst. Control. Lett..

[24]  M. Vidyasagar The graph metric for unstable plants and robustness estimates for feedback stability , 1982, 1982 21st IEEE Conference on Decision and Control.

[25]  Federico Poloni,et al.  A Deflation Approach for Large-Scale Lur'e Equations , 2012, SIAM J. Matrix Anal. Appl..

[26]  Mathukumalli Vidyasagar Normalised coprime factorizations for nonstrictly proper systems , 1988 .

[27]  Mark R. Opmeer,et al.  Error bounds in the gap metric for dissipative balanced approximations , 2013 .

[28]  B. Lohmann,et al.  Order reduction of large scale second-order systems using Krylov subspace methods , 2006 .

[29]  Timo Reis,et al.  Lur’e equations and even matrix pencils , 2011 .

[30]  Ninoslav Truhar,et al.  An Efficient Method for Estimating the Optimal Dampers' Viscosity for Linear Vibrating Systems Using Lyapunov Equation , 2009, SIAM J. Matrix Anal. Appl..

[31]  Carsten Hartmann,et al.  Balanced Truncation of Linear Second-Order Systems: A Hamiltonian Approach , 2010, Multiscale Model. Simul..

[32]  R. Duffin A Minimax Theory for Overdamped Networks , 1955 .

[33]  Younes Chahlaoui,et al.  Second-order balanced truncation , 2006 .

[34]  Zvonimir Bujanovic,et al.  RADI: a low-rank ADI-type algorithm for large scale algebraic Riccati equations , 2015, Numerische Mathematik.

[35]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[36]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[37]  R. Freund Padé-Type Model Reduction of Second-Order and Higher-Order Linear Dynamical Systems , 2004, math/0410195.

[38]  Qiang Ye,et al.  Variational principles for indefinite eigenvalue problems , 1995 .