Liquid-Vapor Phase-Change Heat Transfer on Functionalized Nanowired Surfaces and Beyond

Summary Liquid-vapor phase-change processes have been widely exploited in industrial applications including power generation, water processing and harvesting, cooling/refrigeration and environmental control, and thermal management. Enhancing liquid-vapor phase-change heat transfer is of practical interest. Recent advances in micro/nano-fabrication and characterization techniques have not only enabled exciting heat transfer enhancements but also furthered the fundamental understanding of the liquid-vapor phase-change processes. Nanowires can be synthesized with precise control for producing diverse and desired surface morphology with tunable wettability. This review presents an overview of liquid-vapor phase-change heat transfer enhancement on functionalized nanowired surfaces, as well as other promising strategies and surfaces. In this review, we briefly summarize the fabrication techniques for functionalized nanowired surfaces, discuss the underlying mechanisms for boiling and condensation enhancement, and introduce some important works to illustrate the power of design for functionality. We conclude this review by providing the perspectives for future research directions.

[1]  J. Boreyko,et al.  Hotspot cooling with jumping-drop vapor chambers , 2017 .

[2]  S. Garimella,et al.  Nano- and Microstructures for Thin-Film Evaporation—A Review , 2014 .

[3]  Z. Lan,et al.  Molecular clustering physical model of steam condensation and the experimental study on the initial droplet size distribution , 2009 .

[4]  Chi-Chuan Wang,et al.  Superhydrophobic Si nanowires for enhanced condensation heat transfer , 2017 .

[5]  Ahmed-Shehab Khan,et al.  Transient force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels , 2016 .

[6]  J. Bogan,et al.  Exploring the Role of Adsorption and Surface State on the Hydrophobicity of Rare Earth Oxides. , 2017, ACS applied materials & interfaces.

[7]  George Barbastathis,et al.  Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity. , 2012, ACS nano.

[8]  Evelyn N. Wang,et al.  Jumping-droplet electrostatic energy harvesting , 2014 .

[9]  K. Kim,et al.  A dropwise condensation model using a nano-scale, pin structured surface , 2013 .

[10]  D. J. Preston,et al.  Nanoengineered materials for liquid–vapour phase-change heat transfer , 2017 .

[11]  J. Khan,et al.  Enhanced flow boiling in a microchannel with integration of nanowires , 2012 .

[12]  N. Zuber On the Stability of Boiling Heat Transfer , 1958, Journal of Fluids Engineering.

[13]  Yip Fun Yeung,et al.  Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[14]  M. Kim,et al.  Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling , 2011 .

[15]  Jolanta A Watson,et al.  Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate , 2013, Proceedings of the National Academy of Sciences.

[16]  C. Patrick Collier,et al.  Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation. , 2017, ACS nano.

[17]  Junjie Yan,et al.  Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam–ethanol vapor mixture , 2007 .

[18]  N. Miljkovic,et al.  Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes. , 2016, ACS nano.

[19]  P. Cheng,et al.  Enhanced dropwise condensation by oil infused nano-grass coatings on outer surface of a horizontal copper tube , 2018 .

[20]  Renkun Chen,et al.  Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes. , 2018, Nano letters.

[21]  Wenzhong Zhou,et al.  Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces , 2015, Nature Communications.

[22]  Wei Xu,et al.  Droplet dynamics and heat transfer for dropwise condensation at lower and ultra-lower pressure , 2015 .

[23]  Y. Lee,et al.  Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures , 2018, Nano Energy.

[24]  Zhong Lan,et al.  Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions. , 2017, ACS applied materials & interfaces.

[25]  Wei Xu,et al.  Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach. , 2015, The Journal of chemical physics.

[26]  D. L. Mafra,et al.  Scalable graphene coatings for enhanced condensation heat transfer. , 2015, Nano letters.

[27]  Ali Koşar,et al.  Pool boiling and flow boiling on micro- and nanostructured surfaces , 2015 .

[28]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[29]  Jing Wang,et al.  Hydrophilic directional slippery rough surfaces for water harvesting , 2018, Science Advances.

[30]  Zhiqiang Niu,et al.  Benzoin Radicals as Reducing Agent for Synthesizing Ultrathin Copper Nanowires. , 2017, Journal of the American Chemical Society.

[31]  S. Yao,et al.  Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography. , 2018, Physical review letters.

[32]  Xiaotao Zhu,et al.  Superhydrophilic-superoleophobic coatings , 2012 .

[33]  P. Cheng,et al.  Flow boiling phenomena in a single annular flow regime in microchannels (I): Characterization of flow boiling heat transfer , 2014 .

[34]  Gerry B. Andeen,et al.  The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes , 2000 .

[35]  S. Kandlikar Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer , 2013 .

[36]  J. Aizenberg,et al.  Dropwise condensation on hydrophobic bumps and dimples , 2018 .

[37]  Yonggang Yao,et al.  Rich Mesostructures Derived from Natural Woods for Solar Steam Generation , 2017 .

[38]  Evelyn N Wang,et al.  Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. , 2012, ACS nano.

[39]  S. Kandlikar,et al.  Pool boiling inversion through bubble induced macroconvection , 2017 .

[40]  Wei Xu,et al.  A numerical study of droplet motion/departure on condensation of mixture vapor using lattice Boltzmann method , 2017 .

[41]  G. Peterson,et al.  Pool boiling with high heat flux enabled by a porous artery structure , 2016 .

[42]  Shuhuai Yao,et al.  Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others. , 2012, ACS applied materials & interfaces.

[43]  C. Yamali,et al.  A theory of dropwise condensation at large subcooling including the effect of the sweeping , 2002 .

[44]  Volker Presser,et al.  Water Desalination with Energy Storage Electrode Materials , 2018 .

[45]  Haiqin Wen,et al.  On the heat transfer in dropwise condensation , 1976 .

[46]  Chi-Chuan Wang,et al.  Scale effect on dropwise condensation on superhydrophobic surfaces. , 2014, ACS applied materials & interfaces.

[47]  Sudev Das,et al.  Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface , 2016 .

[48]  K. Kim,et al.  Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces , 2011 .

[49]  S. Tofail,et al.  Effect of annealing on hydrophobic stability of plasma deposited fluoropolymer coatings , 2008 .

[50]  Srinivas Vemuri,et al.  Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan , 2006 .

[51]  Ho Seon Ahn,et al.  Review of boiling heat transfer enhancement on micro/nanostructured surfaces , 2015 .

[52]  T. Venkatesan,et al.  Intrinsic hydrophilic nature of epitaxial thin-film of rare-earth oxide grown by pulsed laser deposition. , 2018, Nanoscale.

[53]  Maneesh K. Gupta,et al.  Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation. , 2012, ACS nano.

[54]  Chang‐Hwan Choi,et al.  Nanoengineered Superhydrophobic Surfaces of Aluminum with Extremely Low Bacterial Adhesivity. , 2017, ACS applied materials & interfaces.

[55]  Meng Hua,et al.  Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation , 2011 .

[56]  R. Advíncula,et al.  Electropolymerized and polymer grafted superhydrophobic, superoleophilic, and hemi-wicking coatings , 2012 .

[57]  Zuankai Wang,et al.  Force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels , 2016 .

[58]  Iztok Golobič,et al.  Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography , 2012 .

[59]  N. Koratkar,et al.  Nanostructured copper interfaces for enhanced boiling. , 2008, Small.

[60]  Peng Cheng,et al.  Wetting Mode Evolution of Steam Dropwise Condensation on Superhydrophobic Surface in the Presence of Noncondensable Gas , 2012 .

[61]  B. Wang,et al.  Advances in dropwise condensation heat transfer: Chinese research , 2000 .

[62]  Zhichun Liu,et al.  Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[63]  Konrad Rykaczewski,et al.  Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[64]  S. Maroo,et al.  Critical height of micro/nano structures for pool boiling heat transfer enhancement , 2013 .

[65]  Tian-Ling Ren,et al.  A review of small heat pipes for electronics , 2016 .

[66]  Jiangtao Cheng,et al.  Condensation heat transfer on two-tier superhydrophobic surfaces , 2012 .

[67]  H. Butt,et al.  3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces , 2016, Scientific Reports.

[68]  Mingzhe Wang,et al.  Effect of surface free energy difference on steam-ethanol mixture condensation heat transfer , 2012 .

[69]  G. Son,et al.  Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface , 1999 .

[70]  Yuejun Zhao,et al.  Planar Jumping-Drop Thermal Diodes , 2011 .

[71]  C. Takoudis,et al.  On the wetting behavior of ceria thin films grown by pulsed laser deposition , 2017 .

[72]  S. Kandlikar,et al.  Microscale Morphology Effects of Copper-Graphene Oxide Coatings on Pool Boiling Characteristics , 2017 .

[73]  M. McCarthy,et al.  Increasing Boiling Heat Transfer using Low Conductivity Materials , 2015, Scientific Reports.

[74]  J. Rose Dropwise condensation theory and experiment: A review , 2002 .

[75]  N. Zuber,et al.  Dynamics of vapor bubbles and boiling heat transfer , 1955 .

[76]  R. Ganguly,et al.  Surface engineering for phase change heat transfer: A review , 2014, 1409.5363.

[77]  Zhipeng Huang,et al.  Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density , 2007 .

[78]  A. Majumdar,et al.  Nanowires for enhanced boiling heat transfer. , 2009, Nano letters.

[79]  B. Mikic,et al.  A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics , 1969 .

[80]  Evelyn N. Wang,et al.  Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer , 2013, Scientific Reports.

[81]  S. Kandlikar,et al.  Pool boiling enhancement through bubble induced convective liquid flow in feeder microchannels , 2016 .

[82]  Stephen J. Fonash,et al.  An Overview of Dry Etching Damage and Contamination Effects , 1990 .

[83]  Enhanced Macroconvection Mechanism With Separate Liquid–Vapor Pathways to Improve Pool Boiling Performance , 2017 .

[84]  Z. Barkay Dynamic study of nanodroplet nucleation and growth on self-supported nanothick liquid films. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[85]  N. Miljkovic,et al.  Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation. , 2017, Nano letters.

[86]  Ebru Demir,et al.  Effect of silicon nanorod length on horizontal nanostructured plates in pool boiling heat transfer with water , 2014 .

[87]  Jeffrey J. Urban,et al.  Emerging Scientific and Engineering Opportunities within the Water-Energy Nexus , 2017 .

[88]  W. Xu,et al.  Droplet Departure Characteristics and Dropwise Condensation Heat Transfer at Low Steam Pressure , 2016 .

[89]  Rajeev Dhiman,et al.  Hydrophobicity of rare-earth oxide ceramics. , 2013, Nature materials.

[90]  R. Cole Bubble frequencies and departure volumes at subatmospheric pressures , 1967 .

[91]  James Loomis,et al.  Solar steam generation by heat localization , 2014, Nature Communications.

[92]  Yuting Luo,et al.  Facile Fabrication of Anodic Alumina Rod-Capped Nanopore Films with Condensate Microdrop Self-Propelling Function. , 2015, ACS applied materials & interfaces.

[93]  S. J. Kim,et al.  Capillary wicking effect of a Cr-sputtered superhydrophilic surface on enhancement of pool boiling critical heat flux , 2017 .

[94]  Kai Chen,et al.  Pool boiling heat transfer enhancement with copper nanowire arrays , 2015 .

[95]  Shuhuai Yao,et al.  Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[96]  Xuemei Chen,et al.  Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[97]  Ho Seon Ahn,et al.  Enhanced critical heat flux by capillary driven liquid flow on the well-designed surface , 2015 .

[98]  Sameer Khandekar,et al.  Measurement of Heat Transfer During Drop-Wise Condensation of Water on Polyethylene , 2009 .

[99]  H. Cho,et al.  Tuning the morphology of copper nanowires by controlling the growth processes in electrodeposition , 2011 .

[100]  Evelyn N. Wang,et al.  Hierarchically structured surfaces for boiling critical heat flux enhancement , 2013 .

[101]  P. Stephan,et al.  High-Resolution Measurements at Nucleate Boiling of Pure FC-84 and FC-3284 and Its Binary Mixtures , 2009 .

[102]  Chen Li,et al.  Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces , 2007 .

[103]  Weiqi Wang,et al.  Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays , 2017 .

[104]  P. Cheng,et al.  Flow boiling phenomena in a single annular flow regime in microchannels (II): Reduced pressure drop and enhanced critical heat flux , 2014 .

[105]  D. Beysens,et al.  Nucleation and growth on a superhydrophobic grooved surface. , 2004, Physical review letters.

[106]  E. Meyer,et al.  Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons , 2017, Scientific Reports.

[107]  P. Cheng,et al.  Dropwise condensation theory revisited: Part I. Droplet nucleation radius , 2015 .

[108]  Wei Wang,et al.  Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions , 2012 .

[109]  Goro Yamauchi,et al.  Hydrophobicity of ion-plated PTFE coatings , 1997 .

[110]  I. P. Vishnev Effect of orienting the hot surface with respect to the gravitational field on the critical nucleate boiling of a liquid , 1973 .

[111]  J. Weibel,et al.  Quantitative Evaluation of the Dependence of Pool Boiling Heat Transfer Enhancement on Sintered Particle Coating Characteristics , 2017 .

[112]  M. Sbragaglia,et al.  Tuning drop motion by chemical patterning of surfaces. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[113]  S. Yao,et al.  How nanorough is rough enough to make a surface superhydrophobic during water condensation , 2012 .

[114]  In Cheol Bang,et al.  Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux , 2010 .

[115]  Bubble-Regulated Silicon Nanowire Synthesis on Micro-Structured Surfaces by Metal-Assisted Chemical Etching. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[116]  M. Kim,et al.  Boiling on spatially controlled heterogeneous surfaces: Wettability patterns on microstructures , 2015 .

[117]  E. Schmidt,et al.  Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform , 1930 .

[118]  Shu-Shen Lyu,et al.  Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure , 2018 .

[119]  Shikuan Yang,et al.  Slippery Wenzel State. , 2015, ACS nano.

[120]  S. Yao,et al.  Modeling and optimization of condensation heat transfer at biphilic interface , 2018, International Journal of Heat and Mass Transfer.

[121]  Ronggui Yang,et al.  Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires. , 2012, Nano letters.

[122]  J. Lienhard,et al.  Hydrodynamic Prediction of Peak Pool-boiling Heat Fluxes from Finite Bodies , 1973 .

[123]  Evelyn N Wang,et al.  Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[124]  Yuekun Lai,et al.  Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications. , 2017, Small.

[125]  J. Weibel,et al.  Enabling Highly Effective Boiling from Superhydrophobic Surfaces. , 2018, Physical review letters.

[126]  Fushou Xie,et al.  Correlations for calculating heat transfer of hydrogen pool boiling , 2016 .

[127]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[128]  Fanghao Yang,et al.  Flow boiling heat transfer of HFE-7000 in nanowire-coated microchannels , 2016 .

[129]  J. Buongiorno,et al.  Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids , 2006 .

[130]  K. Fezzaa,et al.  Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars , 2018, Science Advances.

[131]  Jim C. Cheng,et al.  Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device , 2013 .

[132]  E. Wang,et al.  Multilayer liquid spreading on superhydrophilic nanostructured surfaces , 2008 .

[133]  N. Miljkovic,et al.  Coalescence-induced nanodroplet jumping , 2016 .

[134]  M. Kim,et al.  Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface , 2015 .

[135]  Jonathan Rose,et al.  Further aspects of dropwise condensation theory , 1976 .

[136]  Swapan Bhaumik,et al.  Pool boiling heat transfer of refrigerant R-134a on TiO2 nano wire arrays surface , 2016 .

[137]  Ping-Hei Chen,et al.  Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings , 2012 .

[138]  U. Gross,et al.  Modeling of heat and mass transfer for dropwise condensation of moist air and the experimental validation , 2018 .

[139]  C. Black,et al.  Collapse and reversibility of the superhydrophobic state on nanotextured surfaces , 2014 .

[140]  Ronald Gronsky,et al.  Fabrication of High‐Density, High Aspect Ratio, Large‐Area Bismuth Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Templates , 2002 .

[141]  Evelyn N. Wang,et al.  Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics , 2014 .

[142]  James C. Weaver,et al.  Condensation on slippery asymmetric bumps , 2016, Nature.

[143]  W. King,et al.  Condensate droplet size distribution on lubricant-infused surfaces , 2017 .

[144]  Yong Tang,et al.  A novel in-situ nanostructure forming route and its application in pool-boiling enhancement , 2016 .

[145]  K. Kim,et al.  Effect of liquid uptake on critical heat flux utilizing a three dimensional, interconnected alumina nano porous surfaces , 2012 .

[146]  H. Cho,et al.  Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid , 2014 .

[147]  Y. Katto,et al.  A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids , 1983 .

[148]  Ming-Chang Lu,et al.  A modified hydrodynamic model for pool boiling CHF considering the effects of heater size and nucleation site density , 2015 .

[149]  J. Weibel,et al.  Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces , 2015, Scientific Reports.

[150]  Xiaojun Quan,et al.  Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface , 2014 .

[151]  Y. Nam,et al.  Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces , 2016 .

[152]  K. Rykaczewski,et al.  The effect of Marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces , 2017 .

[153]  S. K. Tyagi,et al.  Renewable and Sustainable Energy Reviews Energy and Exergy Analyses of Thermal Power Plants: a Review , 2022 .

[154]  Min Woo Kim,et al.  Supersonically sprayed reduced graphene oxide film to enhance critical heat flux in pool boiling , 2016 .

[155]  S. Kandlikar,et al.  Direct growth of copper nanowires on a substrate for boiling applications , 2011 .

[156]  W. Rohsenow A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids , 1952, Journal of Fluids Engineering.

[157]  H. Cho,et al.  Interfacial wicking dynamics and its impact on critical heat flux of boiling heat transfer , 2014 .

[158]  S. Mori,et al.  Critical heat flux enhancement by surface modification in a saturated pool boiling: A review , 2017 .

[159]  D. Dobrev,et al.  Single‐Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes , 2001 .

[160]  Young-Man Jeong,et al.  Preparation of super-hydrophilic amorphous titanium dioxide thin film via PECVD process and its application to dehumidifying heat exchangers , 2009 .

[161]  Mousa Abu-Orabi Modeling of heat transfer in dropwise condensation , 1998 .

[162]  Y. Peles,et al.  Condensation heat transfer on patterned surfaces , 2013 .

[163]  Y. Nam,et al.  Enhanced heat transfer using metal foam liquid supply layers for micro heat spreaders , 2017 .

[164]  J. Weibel,et al.  Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces , 2016, Scientific Reports.

[165]  Karim Egab,et al.  Condensation on hybrid-patterned copper tubes (II): Visualization study of droplet dynamics , 2017 .

[166]  Steven M. George,et al.  Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition , 2003 .

[167]  V. Yagov,et al.  Is a crisis in pool boiling actually a hydrodynamic phenomenon , 2014 .

[168]  M. McCarthy,et al.  Materials, Fabrication, and Manufacturing of Micro/Nanostructured Surfaces for Phase-Change Heat Transfer Enhancement , 2014 .

[169]  Jun Zhou,et al.  Water-evaporation-induced electricity with nanostructured carbon materials. , 2017, Nature nanotechnology.

[170]  P. Zhang,et al.  Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. , 2017, ACS applied materials & interfaces.

[171]  P. Cheng,et al.  Lattice Boltzmann simulations for transition from dropwise to filmwise condensation on hydrophobic surfaces with hydrophilic spots , 2017 .

[172]  K. Sanderson,et al.  Organic-inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability. , 2010, ACS nano.

[173]  John G. Jones,et al.  Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures , 2011 .

[174]  Wei Xu,et al.  Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect , 2014 .

[175]  Mahamudur Rahman,et al.  Scalable Nanomanufacturing of Virus‐templated Coatings for Enhanced Boiling , 2014 .

[176]  Ji Min Kim,et al.  Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling , 2014, Scientific Reports.

[177]  Y. Lee,et al.  Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer , 2017 .

[178]  C. Collier,et al.  Dewetting Transitions on Superhydrophobic Surfaces: When Are Wenzel Drops Reversible? , 2013 .

[179]  Chih-hung Chang,et al.  Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper , 2010 .

[180]  Luis Pérez-Lombard,et al.  A review on buildings energy consumption information , 2008 .

[181]  M. Kim,et al.  Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface , 2010 .

[182]  Eric C. Nolan,et al.  A systematic study of pool boiling heat transfer on structured porous surfaces: From nanoscale through microscale to macroscale , 2014 .

[183]  Jacopo Buongiorno,et al.  Critical heat flux maxima during boiling crisis on textured surfaces , 2015, Nature Communications.

[184]  Anthony J. Robinson,et al.  Electric field effects during nucleate boiling from an artificial nucleation site , 2011 .

[185]  Y. Mori,et al.  Pool Boiling of n-Pentane, CFC-113, and Water Under Reduced Gravity: Parabolic Flight Experiments With a Transparent Heater , 1995 .

[186]  S. Kandlikar,et al.  Effect of open microchannel geometry on pool boiling enhancement , 2012 .

[187]  Ryan J. Lewis,et al.  Atomic Layer Deposited Coatings on Nanowires for High Temperature Water Corrosion Protection. , 2016, ACS applied materials & interfaces.

[188]  Albert P. Pisano,et al.  Micromachined passive phase-change cooler for thermal management of chip-level electronics , 2015 .

[189]  S. Kandlikar,et al.  Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels , 2014 .

[190]  P. Cheng,et al.  Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux , 2015 .

[191]  Jacopo Buongiorno,et al.  Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video , 2010 .

[192]  F. He,et al.  Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces. , 2015, ACS nano.

[193]  J. Dickinson,et al.  Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[194]  D. J. Preston,et al.  Jumping Droplets Push the Boundaries of Condensation Heat Transfer , 2018 .

[195]  Lingbo Zhu,et al.  Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. , 2007, Nano letters.

[196]  James W. Baughn,et al.  A new technique for dynamic heat transfer measurements and flow visualization using liquid crystal thermography , 2005 .

[197]  Michael Newton,et al.  Progess in superhydrophobic surface development. , 2008, Soft matter.

[198]  R. Greif,et al.  Heat Transfer to a Boiling Liquid—Mechanism and Correlations , 1959 .

[199]  V. Carey,et al.  Critical heat flux of pool boiling on Si nanowire array-coated surfaces , 2011 .

[200]  V. Damle,et al.  Can Metal Matrix‐Hydrophobic Nanoparticle Composites Enhance Water Condensation by Promoting the Dropwise Mode? , 2015 .

[201]  H. Honda,et al.  Effects of Fin Geometry on Boiling Heat Transfer from Silicon Chips with Micro-Pin-Fins Immersed in FC-72 , 2003 .

[202]  K. Kim,et al.  Dropwise Condensation on Micro- and Nanostructured Surfaces , 2014 .

[203]  Y. Kirichenko,et al.  Determination of the first critical thermal flux on flat heaters , 1971 .

[204]  N. Miljkovic,et al.  Electric Field–Based Control and Enhancement of Boiling and Condensation , 2017 .

[205]  P. Ruchhoeft,et al.  Pool boiling heat transfer enhancement with electrowetting , 2018 .

[206]  H. Cho,et al.  Stable and uniform heat dissipation by nucleate-catalytic nanowires for boiling heat transfer , 2014 .

[207]  Amir Faghri,et al.  Review and Advances in Heat Pipe Science and Technology , 2012 .

[208]  Namkyu Lee,et al.  Enhancement of Pool Boiling Heat Transfer Using Aligned Silicon Nanowire Arrays. , 2017, ACS applied materials & interfaces.

[209]  Weiqi Wang,et al.  A three-dimensional carbon nano-network for high performance lithium ion batteries , 2015 .

[210]  A. Raychaudhuri,et al.  Fabrication of nanowires of multicomponent oxides: Review of recent advances , 2005 .

[211]  Y. Xuan,et al.  Enhanced boiling heat transfer on composite porous surface , 2015 .

[212]  E. Wang,et al.  Condensation heat transfer on superhydrophobic surfaces , 2013 .

[213]  Ronggui Yang,et al.  Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. , 2017, ACS applied materials & interfaces.

[214]  S. Suresh,et al.  Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72 , 2017 .

[215]  Jonathan Rose,et al.  Dropwise Condensation on Surfaces Having Different Thermal Conductivities , 1980 .

[216]  N. Zuber Nucleate boiling. The region of isolated bubbles and the similarity with natural convection , 1963 .

[217]  M. Kim,et al.  A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces , 2011 .

[218]  Gareth H. McKinley,et al.  Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces , 2014, Scientific Reports.

[219]  V. Carey Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Third Edition , 2020 .

[220]  Xiaojun Quan,et al.  An experimental investigation of pool boiling heat transfer on smooth/rib surfaces under an electric field , 2015 .

[221]  M. Kaviany,et al.  Flow-boiling canopy wick for extreme heat transfer , 2018 .

[222]  J. Boreyko,et al.  Vapor chambers with jumping-drop liquid return from superhydrophobic condensers , 2013 .

[223]  M. Kim,et al.  The effect of capillary wicking action of micro/nano structures on pool boiling critical heat flux , 2012 .

[224]  Kripa K. Varanasi,et al.  Spatial control in the heterogeneous nucleation of water , 2009 .

[225]  Boming Yu,et al.  A fractal analysis of dropwise condensation heat transfer , 2009 .

[226]  W. Xu,et al.  Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic–hydrophilic hybrid surfaces , 2015 .

[227]  S. Shiratori,et al.  Fabrication of transparent TiO2 film with high adhesion by using self-assembly methods: Application to super-hydrophilic film , 2008 .

[228]  W. Xu,et al.  Directional Movement of Droplets in Grooves: Suspended or Immersed? , 2016, Scientific Reports.

[229]  Hiroaki Tanaka A Theoretical Study of Dropwise Condensation , 1975 .

[230]  I. Tanasawa,et al.  Measurement of Condensation Curves for Dropwise Condensation of Steam at Atmospheric Pressure , 1983 .

[231]  M. McCarthy,et al.  Role of wickability on the critical heat flux of structured superhydrophilic surfaces. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[232]  J. Murthy,et al.  Assessment of Nanostructured Capillary Wicks for Passive Two-Phase Heat Transport , 2011 .

[233]  H. Cho,et al.  Double-templated electrodeposition: Simple fabrication of micro-nano hybrid structure by electrodeposition for efficient boiling heat transfer , 2012 .

[234]  Youmin Hou,et al.  Recurrent filmwise and dropwise condensation on a beetle mimetic surface. , 2015, ACS nano.

[235]  P. Marty,et al.  Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism , 2009 .

[236]  Gobinda Gopal Khan,et al.  Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template , 2007 .

[237]  S. Kandlikar,et al.  Fabrication of nanowires on orthogonal surfaces of microchannels and their effect on pool boiling , 2012 .

[238]  Sushant Anand,et al.  Enhanced condensation on lubricant-impregnated nanotextured surfaces. , 2012, ACS nano.

[239]  P. Cheng,et al.  Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates , 2013 .

[240]  H. Ghasemi,et al.  Remote Droplet Manipulation on Self‐Healing Thermally Activated Magnetic Slippery Surfaces , 2017 .

[241]  Tong Lin,et al.  Fluoroalkyl Silane Modified Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating , 2012, Advanced materials.

[242]  Evelyn N Wang,et al.  Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[243]  S. Kandlikar A Theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation , 2001 .

[244]  M. Toprak,et al.  Nature‐Inspired Boiling Enhancement by Novel Nanostructured Macroporous Surfaces , 2008 .

[245]  H. Matsui,et al.  Hybrid energy-minimization simulation of equilibrium droplet shapes on hydrophilic/hydrophobic patterned surfaces. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[246]  M. El-Genk,et al.  Effects of inclination angle and liquid subcooling on nucleate boiling on dimpled copper surfaces , 2016 .

[247]  P. Hao,et al.  Numerical simulation of condensation on structured surfaces. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[248]  Pralav P. Shetty,et al.  Thin Film Condensation on Nanostructured Surfaces , 2018 .

[249]  J. Maa Drop size distribution and heat flux of dropwise condensation , 1978 .

[250]  Satish G. Kandlikar,et al.  Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites , 2006 .

[251]  Ronggui Yang,et al.  Hydrophobic copper nanowires for enhancing condensation heat transfer , 2017 .

[252]  James F. Klausner,et al.  An R&D Strategy to Decouple Energy from Water , 2017 .

[253]  Ronggui Yang,et al.  Stable high areal capacity lithium-ion battery anodes based on three-dimensional Ni–Sn nanowire networks , 2012 .

[254]  E. Wang,et al.  Modeling and Optimization of Superhydrophobic Condensation , 2013 .

[255]  D. Niu,et al.  Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance , 2017 .

[256]  Zhong Lan,et al.  Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence , 2013 .

[257]  Hyungdae Kim,et al.  An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface , 2014 .

[258]  Chi-Chuan Wang,et al.  Spatial Control of Heterogeneous Nucleation on the Superhydrophobic Nanowire Array , 2014 .

[259]  John T.W. Yeow,et al.  Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor , 2006 .

[260]  S. Jun,et al.  Pool boiling on nano-textured surfaces , 2013 .

[261]  M. Kim,et al.  Investigation of Pool Boiling Critical Heat Flux Enhancement on a Modified Surface Through the Dynamic Wetting of Water Droplets , 2012 .

[262]  E. Wang,et al.  How coalescing droplets jump. , 2014, ACS nano.

[263]  Zhonghao Rao,et al.  A review of power battery thermal energy management , 2011 .

[264]  Sushil H. Bhavnani,et al.  Boiling Augmentation with Micro/Nanostructured Surfaces: Current Status and Research Outlook , 2014 .

[265]  Kripa K Varanasi,et al.  Stable Dropwise Condensation for Enhancing Heat Transfer via the Initiated Chemical Vapor Deposition (iCVD) of Grafted Polymer Films , 2014, Advanced materials.

[266]  S. Jun,et al.  Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces , 2018 .

[267]  K. Kim,et al.  An experimental and theoretical study on the concept of dropwise condensation , 2006 .

[268]  M. Farzaneh,et al.  Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers , 2004 .

[269]  Y. Takata,et al.  Dynamic behavior of micrometric single water droplets impacting onto heated surfaces with TiO2 hydrophilic coating , 2014 .

[270]  D. Quéré Wetting and Roughness , 2008 .

[271]  J. Boreyko,et al.  Self-propelled dropwise condensate on superhydrophobic surfaces. , 2009, Physical review letters.

[272]  Chao Gao,et al.  Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. , 2011, Nanoscale.

[273]  M. Tiwari,et al.  Flow condensation on copper-based nanotextured superhydrophobic surfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[274]  Mahesh Kumar,et al.  Long term hydrophilic coating on poly(dimethylsiloxane) substrates for microfluidic applications , 2010 .

[275]  Rongfu Wen,et al.  Heterogeneous nucleation capability of conical microstructures for water droplets , 2015 .

[276]  J. A. White,et al.  Theory and simulation of angular hysteresis on planar surfaces. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[277]  Hokyu Moon,et al.  Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions , 2018 .

[278]  D. J. Preston,et al.  Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces , 2018, Scientific Reports.

[279]  Wen‐Di Li,et al.  Bioinspired Nanostructured Surfaces for On-Demand Bubble Transportation. , 2018, ACS applied materials & interfaces.

[280]  D. Beysens Dew nucleation and growth , 2006 .

[281]  Stephan Herminghaus,et al.  Wetting and Dewetting of Complex Surface Geometries , 2008 .

[282]  E. Wang,et al.  Turning bubbles on and off during boiling using charged surfactants , 2015, Nature Communications.

[283]  E. Wang,et al.  Structured surfaces for enhanced pool boiling heat transfer , 2012 .

[284]  Evelyn N Wang,et al.  Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. , 2012, Nano letters.

[285]  S. Moghaddam,et al.  A New Paradigm for Understanding and Enhancing the Critical Heat Flux (CHF) Limit , 2017, Scientific Reports.

[286]  Bo Zhang,et al.  Guided Self-Propelled Leaping of Droplets on a Micro-Anisotropic Superhydrophobic Surface. , 2016, Angewandte Chemie.

[287]  Ji Min Kim,et al.  The effect of water absorption on critical heat flux enhancement during pool boiling , 2012 .

[288]  Transient characteristics of initial droplet size distribution and effect of pressure on evolution of transient condensation on low thermal conductivity surface , 2010 .

[289]  Nenad Miljkovic,et al.  Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality. , 2017, ACS applied materials & interfaces.

[290]  Time-averaged droplet size distribution in steady-state dropwise condensation , 2015 .

[291]  S. Kandlikar,et al.  Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels , 2015 .

[292]  C. Tien A hydrodynamic model for nucleate pool boiling , 1962 .

[293]  Karim Egab,et al.  Condensation on hybrid-patterned copper tubes (I): Characterization of condensation heat transfer , 2017 .

[294]  Rongfu Wen,et al.  Effect of nano structures on the nucleus wetting modes during water vapour condensation: from individual groove to nano-array surface , 2016 .

[295]  Jungho Kim Review of nucleate pool boiling bubble heat transfer mechanisms , 2009 .

[296]  Charles T Black,et al.  Antifogging abilities of model nanotextures. , 2017, Nature materials.

[297]  Gareth H. McKinley,et al.  Superhydrophobic Carbon Nanotube Forests , 2003 .

[298]  S. Kandlikar,et al.  Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—A Critical Review and Future Directions , 2011 .

[299]  M. Tiwari,et al.  Dropwise condensation on superhydrophobic nanostructured surfaces: literature review and experimental analysis , 2014 .

[300]  N. Miljkovic,et al.  Jumping-droplet electronics hot-spot cooling , 2017 .

[301]  S. Moghaddam,et al.  Role of bubble growth dynamics on microscale heat transfer events in microchannel flow boiling process , 2015 .

[302]  L. Tadrist,et al.  A review on boiling heat transfer enhancement with nanofluids , 2011, Nanoscale research letters.

[303]  Rongfu Wen,et al.  Evolution of transient cluster/droplet size distribution in a heterogeneous nucleation process , 2014 .

[304]  Neelesh A. Patankar,et al.  Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer , 2010 .

[305]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[306]  Evelyn N. Wang,et al.  Water harvesting from air with metal-organic frameworks powered by natural sunlight , 2017, Science.

[307]  S. Kandlikar Mechanistic Considerations for Enhancing Flow Boiling Heat Transfer in Microchannels , 2015 .

[308]  J. Ding,et al.  Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings , 2012 .

[309]  K. Muralidhar,et al.  Dropwise condensation patterns of bismuth formed on horizontal and vertical surfaces , 2018, International Journal of Heat and Mass Transfer.

[310]  S. Kandlikar,et al.  Effects of nanowire height on pool boiling performance of water on silicon chips , 2011 .

[311]  S. Suresh,et al.  Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate , 2016 .

[312]  M. Kim,et al.  Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: Controlled hydrophobic patterns on a hydrophilic substrate , 2014 .

[313]  Bo Yu,et al.  Molecular dynamics simulation of bubble nucleation on nanostructure surface , 2018 .

[314]  Joanna Aizenberg,et al.  Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. , 2012, ACS nano.

[315]  H. Qiu,et al.  Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling , 2010, 1008.2208.

[316]  Rongfu Wen,et al.  A droplet model in steam condensation with noncondensable gas , 2013 .