The spectra of large Toeplitz band matrices with a randomly perturbed entry
暂无分享,去创建一个
[1] A. Böttchera,et al. Can spectral value sets of Toeplitz band matrices jump ? , 2002 .
[2] Frank Spitzer,et al. The Toeplitz Matrices of an Arbitrary Laurent Polynomial. , 1960 .
[3] David R. Nelson,et al. Vortex pinning and non-Hermitian quantum mechanics , 1997 .
[4] L. Trefethen,et al. Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .
[5] Richard M. Beam,et al. The Asymptotic Spectra of Banded Toeplitz and Quasi-Toeplitz Matrices , 1993, SIAM J. Sci. Comput..
[6] Spectral properties of random non-self-adjoint matrices and operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[7] David R. Nelson,et al. NON-HERMITIAN LOCALIZATION AND POPULATION BIOLOGY , 1997, cond-mat/9708071.
[8] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[9] Lloyd N. Trefethen,et al. Pseudospectra of Linear Operators , 1997, SIAM Rev..
[10] A. Böttcher. Pseudospectra and Singular Values of Large Convolution Operators , 1994 .
[11] Mark Embree,et al. Infinite Toeplitz and Laurent matrices with localized impurities , 2002 .
[12] Gilbert Strang,et al. Localized Eigenvectors from Widely Spaced Matrix Modifications , 2003, SIAM J. Discret. Math..
[13] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[14] C. W. Gear,et al. A simple set of test matrices for eigenvalue programs , 1969 .
[15] M. Embree,et al. Spectral approximation of banded Laurent matrices with localized random perturbations , 2002 .
[16] H. Kreiss,et al. Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .
[17] Non-Hermitian localization and delocalization. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[18] L. Trefethen. Spectra and pseudospectra , 2005 .
[19] H. Kreiss. Stability theory for difference approximations of mixed initial boundary value problems. I , 1968 .
[20] Albrecht Böttcher,et al. $C^*$-Algebras in Numerical Analysis , 2000, Irish Mathematical Society Bulletin.
[23] Diederich Hinrichsen,et al. Spectral value sets: a graphical tool for robustness analysis , 1993 .
[24] L. Trefethen,et al. Spectra, pseudospectra, and localization for random bidiagonal matrices , 2000, cond-mat/0003514.
[25] Steffen Roch,et al. C* - Algebras and Numerical Analysis , 2000 .
[26] Rudolf A. Römer,et al. The Anderson Model of Localization: A Challenge for Modern Eigenvalue Methods , 1999, SIAM J. Sci. Comput..
[27] H. Landau,et al. On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels , 1975 .
[28] D. Hinrichsen,et al. Real and Complex Stability Radii: A Survey , 1990 .
[29] Alan Edelman,et al. Nongeneric Eigenvalue Perturbations of Jordan Blocks , 1998 .
[30] Mark Embree,et al. On large Toeplitz band matrices with an uncertain block , 2003 .
[31] A. Böttcher,et al. Can spectral value sets of Toeplitz band matrices jump , 2002 .
[32] Mark Ainsworth,et al. The graduate student's guide to numerical analysis '98 : lecture notes from the VIII EPSRC Summer School in Numerical Analysis , 1999 .