The spectra of large Toeplitz band matrices with a randomly perturbed entry

This paper is concerned with the union spΩ(j,k) Tn(a) of all possible spectra that may emerge when perturbing a large n × n Toeplitz band matrix Tn(a) in the (j, k) site by a number randomly chosen from some set Ω. The main results give descriptive bounds and, in several interesting situations, even provide complete identifications of the limit of spΩ(j,k) Tn(a) as n → ∞. Also discussed are the cases of small and large sets Ω as well as the "discontinuity of the infinite volume case", which means that in general spΩ(j,k) Tn(a) does not converge to something close to spΩ(j,k) Tn(a) as n → ∞ where T(a) is the corresponding infinite Toeplitz matrix. Illustrations are provided for tridiagonal Toeplitz matrices, a notable special case.

[1]  A. Böttchera,et al.  Can spectral value sets of Toeplitz band matrices jump ? , 2002 .

[2]  Frank Spitzer,et al.  The Toeplitz Matrices of an Arbitrary Laurent Polynomial. , 1960 .

[3]  David R. Nelson,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997 .

[4]  L. Trefethen,et al.  Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .

[5]  Richard M. Beam,et al.  The Asymptotic Spectra of Banded Toeplitz and Quasi-Toeplitz Matrices , 1993, SIAM J. Sci. Comput..

[6]  Spectral properties of random non-self-adjoint matrices and operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  David R. Nelson,et al.  NON-HERMITIAN LOCALIZATION AND POPULATION BIOLOGY , 1997, cond-mat/9708071.

[8]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[9]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[10]  A. Böttcher Pseudospectra and Singular Values of Large Convolution Operators , 1994 .

[11]  Mark Embree,et al.  Infinite Toeplitz and Laurent matrices with localized impurities , 2002 .

[12]  Gilbert Strang,et al.  Localized Eigenvectors from Widely Spaced Matrix Modifications , 2003, SIAM J. Discret. Math..

[13]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[14]  C. W. Gear,et al.  A simple set of test matrices for eigenvalue programs , 1969 .

[15]  M. Embree,et al.  Spectral approximation of banded Laurent matrices with localized random perturbations , 2002 .

[16]  H. Kreiss,et al.  Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .

[17]  Non-Hermitian localization and delocalization. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  L. Trefethen Spectra and pseudospectra , 2005 .

[19]  H. Kreiss Stability theory for difference approximations of mixed initial boundary value problems. I , 1968 .

[20]  Albrecht Böttcher,et al.  $C^*$-Algebras in Numerical Analysis , 2000, Irish Mathematical Society Bulletin.

[23]  Diederich Hinrichsen,et al.  Spectral value sets: a graphical tool for robustness analysis , 1993 .

[24]  L. Trefethen,et al.  Spectra, pseudospectra, and localization for random bidiagonal matrices , 2000, cond-mat/0003514.

[25]  Steffen Roch,et al.  C* - Algebras and Numerical Analysis , 2000 .

[26]  Rudolf A. Römer,et al.  The Anderson Model of Localization: A Challenge for Modern Eigenvalue Methods , 1999, SIAM J. Sci. Comput..

[27]  H. Landau,et al.  On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels , 1975 .

[28]  D. Hinrichsen,et al.  Real and Complex Stability Radii: A Survey , 1990 .

[29]  Alan Edelman,et al.  Nongeneric Eigenvalue Perturbations of Jordan Blocks , 1998 .

[30]  Mark Embree,et al.  On large Toeplitz band matrices with an uncertain block , 2003 .

[31]  A. Böttcher,et al.  Can spectral value sets of Toeplitz band matrices jump , 2002 .

[32]  Mark Ainsworth,et al.  The graduate student's guide to numerical analysis '98 : lecture notes from the VIII EPSRC Summer School in Numerical Analysis , 1999 .