Nonparametric regression on hidden phi-mixing variables: identifiability and consistency of a pseudo-likelihood based estimation procedure
暂无分享,去创建一个
[1] Gary A. Churchill,et al. Hidden Markov Chains and the Analysis of Genome Structure , 1992, Comput. Chem..
[2] E. Rio,et al. Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .
[3] A. Ambrosetti,et al. A primer of nonlinear analysis , 1993 .
[4] D. Ioannides,et al. Nonparametric regression with errors in variables and applications , 1997 .
[5] Y. Wong,et al. Differentiable Manifolds , 2009 .
[6] P. Hall,et al. Optimal Rates of Convergence for Deconvolving a Density , 1988 .
[7] Claire Lacour,et al. Adaptive estimation of the transition density of a particular hidden Markov chain , 2006, math/0611681.
[8] Thierry Dumont,et al. Simultaneous Localization and Mapping Problem in Wireless Sensor Networks , 2012 .
[9] P. Doukhan,et al. Weak Dependence: With Examples and Applications , 2007 .
[10] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[11] Claire Lacour,et al. Nonparametric estimation of the stationary density and the transition density of a Markov chain , 2006, math/0611645.
[12] Ja-Yong Koo. Logspline Deconvolution in Besov Space , 1999 .
[13] Rogemar S. Mamon,et al. Hidden Markov Models In Finance , 2007 .
[14] G. Burton. Sobolev Spaces , 2013 .
[15] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[16] R. Carroll,et al. Deconvolving kernel density estimators , 1987 .
[17] J. Koo,et al. B-spline estimation of regression functions with errors in variable , 1998 .
[18] R. Adamczak,et al. Exponential concentration inequalities for additive functionals of Markov chains , 2012, 1201.3569.
[19] D. R. Smart. Fixed Point Theorems , 1974 .
[20] C. Lacour. Rates of convergence for nonparametric deconvolution , 2006, math/0611692.
[21] S. Geer. Empirical Processes in M-Estimation , 2000 .
[22] Paul-Marie Samson,et al. Concentration of measure inequalities for Markov chains and $\Phi$-mixing processes , 2000 .
[23] C. D. Boor,et al. On splines and their minimum properties , 1966 .
[24] R. Douc,et al. Quantitative bounds for geometric convergence rates of Markov Chains , 2002 .
[25] Least squares type estimation of the transition density of a particular hidden Markov chain , 2008, 0801.2624.
[26] Biing-Hwang Juang,et al. Hidden Markov Models for Speech Recognition , 1991 .
[27] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[28] Harry Haupt. Jérôme Dedecker, Paul Doukhan, Gabriel Lang, José Rafael León R., Sana Louhichi and Clémentine Prieur: Weak dependence: with examples and applications. (Lecture notes in statistics) , 2009 .
[29] Claire Lacour,et al. Data‐driven density estimation in the presence of additive noise with unknown distribution , 2011 .
[30] L. Evans. Measure theory and fine properties of functions , 1992 .
[31] R. Nickl,et al. Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov- and Sobolev-Type , 2007 .
[32] Jianqing Fan,et al. Nonparametric regression with errors in variables , 1993 .
[33] Marie-Luce Taupin,et al. Nonparametric Estimation of the Regression Function in an Errors-in-Variables Model , 2005 .
[34] R. Tibshirani,et al. Generalized Additive Models , 1986 .
[35] Ramon van Handel,et al. Consistent Order Estimation and Minimal Penalties , 2010, IEEE Transactions on Information Theory.