Nonparametric regression on hidden phi-mixing variables: identifiability and consistency of a pseudo-likelihood based estimation procedure

This paper outlines a new nonparametric estimation procedure for unobserved phi-mixing processes. It is assumed that the only information on the stationary hidden states (Xk) is given by the process (Yk), where Yk is a noisy observation of f(Xk). The paper introduces a maximum pseudo-likelihood procedure to estimate the function f and the distribution of the hidden states using blocks of observations of length b. The identifiability of the model is studied in the particular cases b=1 and b=2. The consistency of the estimators of f and of the distribution of the hidden states as the number of observations grows to infinity is established.

[1]  Gary A. Churchill,et al.  Hidden Markov Chains and the Analysis of Genome Structure , 1992, Comput. Chem..

[2]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[3]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[4]  D. Ioannides,et al.  Nonparametric regression with errors in variables and applications , 1997 .

[5]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[6]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[7]  Claire Lacour,et al.  Adaptive estimation of the transition density of a particular hidden Markov chain , 2006, math/0611681.

[8]  Thierry Dumont,et al.  Simultaneous Localization and Mapping Problem in Wireless Sensor Networks , 2012 .

[9]  P. Doukhan,et al.  Weak Dependence: With Examples and Applications , 2007 .

[10]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[11]  Claire Lacour,et al.  Nonparametric estimation of the stationary density and the transition density of a Markov chain , 2006, math/0611645.

[12]  Ja-Yong Koo Logspline Deconvolution in Besov Space , 1999 .

[13]  Rogemar S. Mamon,et al.  Hidden Markov Models In Finance , 2007 .

[14]  G. Burton Sobolev Spaces , 2013 .

[15]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[16]  R. Carroll,et al.  Deconvolving kernel density estimators , 1987 .

[17]  J. Koo,et al.  B-spline estimation of regression functions with errors in variable , 1998 .

[18]  R. Adamczak,et al.  Exponential concentration inequalities for additive functionals of Markov chains , 2012, 1201.3569.

[19]  D. R. Smart Fixed Point Theorems , 1974 .

[20]  C. Lacour Rates of convergence for nonparametric deconvolution , 2006, math/0611692.

[21]  S. Geer Empirical Processes in M-Estimation , 2000 .

[22]  Paul-Marie Samson,et al.  Concentration of measure inequalities for Markov chains and $\Phi$-mixing processes , 2000 .

[23]  C. D. Boor,et al.  On splines and their minimum properties , 1966 .

[24]  R. Douc,et al.  Quantitative bounds for geometric convergence rates of Markov Chains , 2002 .

[25]  Least squares type estimation of the transition density of a particular hidden Markov chain , 2008, 0801.2624.

[26]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[27]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[28]  Harry Haupt Jérôme Dedecker, Paul Doukhan, Gabriel Lang, José Rafael León R., Sana Louhichi and Clémentine Prieur: Weak dependence: with examples and applications. (Lecture notes in statistics) , 2009 .

[29]  Claire Lacour,et al.  Data‐driven density estimation in the presence of additive noise with unknown distribution , 2011 .

[30]  L. Evans Measure theory and fine properties of functions , 1992 .

[31]  R. Nickl,et al.  Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov- and Sobolev-Type , 2007 .

[32]  Jianqing Fan,et al.  Nonparametric regression with errors in variables , 1993 .

[33]  Marie-Luce Taupin,et al.  Nonparametric Estimation of the Regression Function in an Errors-in-Variables Model , 2005 .

[34]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[35]  Ramon van Handel,et al.  Consistent Order Estimation and Minimal Penalties , 2010, IEEE Transactions on Information Theory.