Role of PI3K/Akt and mTOR complexes in Th17 cell differentiation

Interleukin (IL)‐17–producing helper T (Th17) cells serve as a Th subset involved in epithelial cell– and neutrophil‐mediated immune responses against extracellular microbes and in the development of various autoimmune diseases. The differentiation of Th17 cells is controlled by a number of intracellular signaling cascades and a complex network of transcription factors. Recently, it has been shown that PI3K, Akt, and mammalian target of rapamycin (mTOR) complexes, such as mTORC1 and mTORC2, also positively regulate Th17 differentiation both in vivo and in vitro via multiple mechanisms; here, we review the current knowledge regarding the mechanisms through which these molecules enhance Th17 differentiation.

[1]  A. Hirao,et al.  PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORγ. , 2021, Cell reports.

[2]  T. Suda,et al.  Dynamic regulation of Th17 differentiation by oxygen concentrations. , 2012, International immunology.

[3]  G. Semenza,et al.  Control of TH17/Treg Balance by Hypoxia-Inducible Factor 1 , 2011, Cell.

[4]  D. Green,et al.  HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells , 2011, The Journal of experimental medicine.

[5]  P. Worley,et al.  The mammalian Target of Rapamycin (mTOR) regulates T helper cell differentiation through the selective activation of mTORC1 and mTORC2 signaling , 2011, Nature Immunology.

[6]  R. DePinho,et al.  Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells , 2010, Nature Immunology.

[7]  C. Spencer,et al.  Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. , 2010, Immunity.

[8]  R. DePinho,et al.  Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells , 2010, The Journal of experimental medicine.

[9]  K. Shokat,et al.  T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR , 2008, Proceedings of the National Academy of Sciences.

[10]  Jay K Kolls,et al.  The Biological Functions of T Helper 17 Cell Effector Cytokines in Inflammation , 2022 .

[11]  K. Okkenhaug,et al.  The p110δ Isoform of Phosphoinositide 3-Kinase Controls Clonal Expansion and Differentiation of Th Cells1 , 2006, The Journal of Immunology.