Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes

The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.

[1]  Zubin Jacob,et al.  Optical hyperlens: far-field imaging beyond the diffraction limit , 2006, SPIE NanoScience + Engineering.

[2]  O. Hess,et al.  Metamaterials with Quantum Gain , 2013, Science.

[3]  A. Kavokin,et al.  Optical spin hall effect. , 2005, Physical review letters.

[4]  F. J. Rodríguez-Fortuño,et al.  Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes , 2013, Science.

[5]  Self-induced torque in hyperbolic metamaterials. , 2013, Physical review letters.

[6]  Yuri S. Kivshar,et al.  Microscopic model of Purcell enhancement in hyperbolic metamaterials , 2012, 1205.3955.

[7]  N. Engheta,et al.  Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. , 2009, Physical review letters.

[8]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[9]  Erez Hasman,et al.  Coriolis effect in optics: unified geometric phase and spin-Hall effect. , 2008, Physical review letters.

[10]  G. Wurtz,et al.  Anisotropic optical properties of arrays of gold nanorods embedded in alumina , 2006 .

[11]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[12]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[13]  Michel Dyakonov,et al.  Possibility of Orienting Electron Spins with Current , 1971 .

[14]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[15]  R. J. Bell,et al.  Generalized Laws of Refraction and Reflection , 1969 .

[16]  Z. Jacob,et al.  Enhanced and directional single-photon emission in hyperbolic metamaterials , 2013, 1301.4676.

[17]  Engheta,et al.  A metamaterial surface for compact cavity resonators , 2004, IEEE Antennas and Wireless Propagation Letters.

[18]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[19]  E. Hasman,et al.  Spin-Optical Metamaterial Route to Spin-Controlled Photonics , 2013, Science.

[20]  R. Merlin,et al.  Radiationless Electromagnetic Interference: Evanescent-Field Lenses and Perfect Focusing , 2007, Science.

[21]  V. Podolskiy,et al.  Nanowire metamaterials with extreme optical anisotropy , 2006, physics/0604065.

[22]  Martijn Wubs,et al.  Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity , 2012, 1204.5413.

[23]  T. Ebbesen,et al.  Weak measurements of light chirality with a plasmonic slit. , 2012, Physical review letters.

[24]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[25]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[26]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[27]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[28]  Y. Kivshar,et al.  Complex band structure of nanostructured metal-dielectric metamaterials. , 2013, Optics express.

[29]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[30]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[31]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[32]  Yuri S. Kivshar,et al.  Hyperbolic transmission-line metamaterials , 2012 .

[33]  Vladimir M. Shalaev,et al.  Sub‐wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium , 2013 .

[34]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[35]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[36]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[37]  R J Pollard,et al.  Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. , 2013, Optics express.

[38]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[39]  Fang Li,et al.  Far-field Imaging beyond the Diffraction Limit Using a Single Radar , 2014 .

[40]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[41]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[42]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[43]  Kan Yao,et al.  Generalized laws of reflection and refraction from transformation optics , 2012, 1202.5829.

[44]  G. Eleftheriades,et al.  Planar negative refractive index media using periodically L-C loaded transmission lines , 2002 .