Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

This paper presents a new framework for capturing large and complex deformations in image registration and atlas construction. This challenging and recurrent problem in computer vision and medical imaging currently relies on iterative and local approaches, which are prone to local minima and, therefore, limit present methods to relatively small deformations. Our general framework introduces to this effect a new direct feature matching technique that finds global correspondences between images via simple nearest-neighbor searches. More specifically, very large image deformations are captured in Spectral Forces, which are derived from an improved graph spectral representation. We illustrate the benefits of our framework through a new enhanced version of the popular Log-Demons algorithm, named the Spectral Log-Demons, as well as through a groupwise extension, named the Groupwise Spectral Log-Demons, which is relevant for atlas construction. The evaluations of these extended versions demonstrate substantial improvements in accuracy and robustness to large deformations over the conventional Demons approaches.

[1]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[2]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[3]  Ben Glocker,et al.  WESD--Weighted Spectral Distance for Measuring Shape Dissimilarity , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Nicholas Ayache,et al.  Non-parametric Diffeomorphic Image Registration with the Demons Algorithm , 2007, MICCAI.

[5]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Xavier Pennec,et al.  Capturing the multiscale anatomical shape variability with polyaffine transformation trees , 2012, Medical Image Anal..

[7]  Hervé Delingette,et al.  Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population , 2012, IEEE Transactions on Medical Imaging.

[8]  Nicholas Ayache,et al.  Understanding the "Demon's Algorithm": 3D Non-rigid Registration by Gradient Descent , 1999, MICCAI.

[9]  Nassir Navab,et al.  A general preconditioning scheme for difference measures in deformable registration , 2011, 2011 International Conference on Computer Vision.

[10]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  D. Hill,et al.  Non-rigid image registration: theory and practice. , 2004, The British journal of radiology.

[12]  Tsvi Tlusty,et al.  A RELATION BETWEEN THE MULTIPLICITY OF THE SECOND EIGENVALUE OF A GRAPH LAPLACIAN, COURANT'S NODAL LINE THEOREM AND THE SUBSTANTIAL DIMENSION OF TIGHT POLYHEDRAL SURFACES ∗ , 2010, 1007.4132.

[13]  Daniel Rueckert,et al.  Consistent groupwise non-rigid registration for atlas construction , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[14]  Anand Rangarajan,et al.  A new algorithm for non-rigid point matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[15]  Antonio Robles-Kelly,et al.  Segmentation via Graph-Spectral Methods and Riemannian Geometry , 2005, CAIP.

[16]  Ben Glocker,et al.  Deformable medical image registration: setting the state of the art with discrete methods. , 2011, Annual review of biomedical engineering.

[17]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  Hervé Delingette,et al.  International Journal of Computer Vision Manuscript No. 10.1007/s11263-010-0405-z The final publication is available at www.springerlink.com iLogDemons: A Demons-Based Registration Algorithm for Tracking Incompressible Elastic Biological Tissues , 2022 .

[20]  Sohan R. Ranjan Organ localization through anatomy-aware non-rigid registration with atlas , 2011, 2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).

[21]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[22]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[23]  Nassir Navab,et al.  Linear intensity-based image registration by Markov random fields and discrete optimization , 2010, Medical Image Anal..

[24]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[25]  Hervé Delingette,et al.  Statistical Atlas of Human Cardiac Fibers: Comparison with Abnormal Hearts , 2011, STACOM.

[26]  Edwin R. Hancock,et al.  Point pattern matching with robust spectral correspondence , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[27]  Leo Grady,et al.  FOCUSR: Feature Oriented Correspondence Using Spectral Regularization--A Method for Precise Surface Matching , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[29]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[30]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[31]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[32]  Edwin R. Hancock,et al.  Spherical embeddings for non-Euclidean dissimilarities , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Daniel Rueckert,et al.  Simultaneous Multi-scale Registration Using Large Deformation Diffeomorphic Metric Mapping , 2011, IEEE Transactions on Medical Imaging.

[34]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[36]  Chris H. Q. Ding,et al.  K-means clustering via principal component analysis , 2004, ICML.

[37]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[38]  P. Kellman,et al.  Reducing motion sensitivity in free breathing DWI of the heart with localized Principal Component Analysis , 2009 .

[39]  Stephen R. Marsland,et al.  Groupwise Non-rigid Registration Using Polyharmonic Clamped-Plate Splines , 2003, MICCAI.

[40]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[41]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Different Scenes , 2008, ECCV.

[42]  Nicholas Ayache,et al.  Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach , 2008, MICCAI.

[43]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[44]  Alain Trouvé,et al.  Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents , 2011, NeuroImage.

[45]  Colin Studholme,et al.  A template free approach to volumetric spatial normalization of brain anatomy , 2004, Pattern Recognit. Lett..

[46]  Leo Grady,et al.  Spectral Demons - Image Registration via Global Spectral Correspondence , 2012, ECCV.

[47]  Hervé Delingette,et al.  A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts , 2007, IEEE Transactions on Medical Imaging.

[48]  Nicholas Ayache,et al.  LCC-Demons: A robust and accurate symmetric diffeomorphic registration algorithm , 2013, NeuroImage.

[49]  Hervé Delingette,et al.  Statistical Analysis of the Human Cardiac Fiber Architecture from DT-MRI , 2011, FIMH.

[50]  Leo Grady,et al.  Groupwise Spectral Log-Demons Framework for Atlas Construction , 2012, MCV.

[51]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[52]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[53]  J. Magnus On Differentiating Eigenvalues and Eigenvectors , 1985, Econometric Theory.

[54]  Martin Reuter,et al.  Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions , 2010, International Journal of Computer Vision.

[55]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[56]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[57]  Jitendra Malik,et al.  Large displacement optical flow , 2009, CVPR.

[58]  Kaleem Siddiqi,et al.  Diffeomorphic Spectral Matching of Cortical Surfaces , 2013, IPMI.

[59]  Jianbo Shi,et al.  Learning Segmentation by Random Walks , 2000, NIPS.

[60]  Ali R. Khan,et al.  Computing an average anatomical atlas using LDDMM and geodesic shooting , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[61]  Leo Grady,et al.  Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .

[62]  Yosi Keller,et al.  Improving Shape Retrieval by Spectral Matching and Meta Similarity , 2010 .

[63]  W. Eric L. Grimson,et al.  Efficient Population Registration of 3D Data , 2005, CVBIA.

[64]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  Leo Grady,et al.  Fast Brain Matching with Spectral Correspondence , 2011, IPMI.

[67]  Nicholas Ayache,et al.  Iconic feature based nonrigid registration: the PASHA algorithm , 2003, Comput. Vis. Image Underst..

[68]  Edwin R. Hancock,et al.  Spectral correspondence for point pattern matching , 2003, Pattern Recognit..

[69]  Monica Hernandez,et al.  Contributions to 3D Diffeomorphic Atlas Estimation: Application to Brain Images , 2007, MICCAI.

[70]  Nicholas Ayache,et al.  Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration , 2010, IEEE Transactions on Medical Imaging.

[71]  Václav Hlavác,et al.  Efficient MRF Deformation Model for Non-Rigid Image Matching , 2007, CVPR.

[72]  J. Gee,et al.  Geodesic estimation for large deformation anatomical shape averaging and interpolation , 2004, NeuroImage.

[73]  Dinggang Shen,et al.  SharpMean: Groupwise registration guided by sharp mean image and tree-based registration , 2011, NeuroImage.

[74]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.