Efficient LLR Calculation for Non-Binary Modulations over Fading Channels

Log-likelihood ratio (LLR) computation for non-binary modulations over fading channels is complicated. A measure of LLR accuracy on asymmetric binary channels is introduced to facilitate good LLR approximations for non-binary modulations. Considering piecewise linear LLR approximations, we prove convexity of optimizing the coefficients according to this measure. For the optimized approximate LLRs, we report negligible performance loss compared to true LLRs.

[1]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[2]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[3]  Amir K. Khandani,et al.  Invariance Properties of Binary Linear Codes Over a Memoryless Channel With Discrete Input , 2007, IEEE Transactions on Information Theory.

[4]  Ingmar Land,et al.  Log-likelihood values and Monte Carlo simulation - some fundamental results , 2000 .

[5]  Masoud Ardakani,et al.  Linear LLR approximation for iterative decoding on wireless channels , 2009, IEEE Transactions on Communications.

[6]  Paola Bisaglia,et al.  Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2 , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[7]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[8]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[9]  Daniel J. Costello,et al.  Error Control Coding, Second Edition , 2004 .

[10]  Masoud Ardakani,et al.  A more accurate one-dimensional analysis and design of irregular LDPC codes , 2004, IEEE Transactions on Communications.

[11]  Dan Keun Sung,et al.  Log-likelihood ratio (LLR) conversion schemes in orthogonal code hopping multiplexing , 2003, IEEE Commun. Lett..

[12]  Gideon Kaplan ON INFORMATION RATES OF COMPOUND CHANNELS (With Application to Antipodal Signaling in a Fading Environment) , 1980 .

[13]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[14]  Paul H. Siegel,et al.  Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[15]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[16]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[17]  Paul H. Siegel,et al.  Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels , 2001, IEEE J. Sel. Areas Commun..

[18]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation Revisited: A Mismatched Decoding Perspective , 2008, IEEE Transactions on Information Theory.

[19]  Masoud Ardakani,et al.  LDPC code design considerations for non-uniform channels , 2010, IEEE Transactions on Communications.

[20]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[21]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).