High-temperature elastic softening of orthopyroxene and seismic properties of the lithospheric upper mantle

SUMMARY Mineralogical models suggest that low velocity zones of the upper mantle may be accounted for by elasticity of dry rocks along geotherms away from the mid-oceanic ridges (MOR) while, closer to MOR, anelasticity plays a significant role in reducing shear wave velocities VS and generating attenuation. We investigate the potential influence of elastic softening, precursor of high-temperature phase transition in orthopyroxenes, on the seismic properties of the upper mantle. In situ Brillouin and Raman spectroscopy were used to evidence pre-transitional behaviour at high temperature in natural San Carlos orthopyroxene. Pre-transitional behaviour induces a large softening of the acoustic and low frequency modes, resulting in a large anharmonic decrease of sound velocities, similar to that observed in the MgSiO3 end-member orthoenstatite. The high-temperature high-pressure phase diagram of enstatite is revised to account for the new phase transition, and a simple model is developed to evaluate elastic softening effects on the upper-mantle seismic properties, whose results depend much on the as yet poorly constrained pressure and compositional dependence of the phase transition boundary. Within the tested range of parameters, OPx softening is likely to affect the seismic properties of mantle rocks at depths shallower than 80 km in hot regions. Thus elastic softening of pyroxene is unlikely to affect the LVZ or continental lithospheric mantle unless the transition temperature is drastically reduced by incorporation of aluminium in orthopyroxene. It will contribute to a decrease of VS near MOR, hot spots and evolved continental rifts, where it can explain part of the non-linear high-temperature decrease of VS in the lithospheric oceanic mantle. It will affect the magnitude of anelastic effects and the nature of the likely mechanisms of attenuation required to match seismological observations.

[1]  S. Shim,et al.  In situ Raman spectroscopy of MgSiO3 enstatite up to 1550 K , 2009 .

[2]  B. Romanowicz,et al.  Measurement and implications of frequency dependence of attenuation , 2009 .

[3]  T. Kanazawa,et al.  Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates , 2009, Science.

[4]  P. Shearer,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S11 Schemes S1 to S10 Tables S1 and S2 a Global View of the Lithosphere-asthenosphere Boundary , 2022 .

[5]  J. Bass,et al.  Rapid identification of steatite–enstatite polymorphs at various temperatures , 2008 .

[6]  W. Griffin,et al.  Integrated geophysical‐petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications , 2008 .

[7]  A. Dziewoński,et al.  Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America , 2008 .

[8]  D. Forsyth,et al.  Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone , 2007 .

[9]  D. Forsyth,et al.  Rayleigh wave tomography beneath intraplate volcanic ridges in the South Pacific , 2007 .

[10]  K. Knight,et al.  High temperature structural and thermoelastic behaviour of mantle orthopyroxene: an in situ neutron powder diffraction study , 2007 .

[11]  K. Priestley,et al.  Azimuthal anisotropy of the Pacific region , 2006 .

[12]  K. Priestley,et al.  Multimode surface waveform tomography of the Pacific Ocean: a closer look at the lithospheric cooling signature , 2006 .

[13]  K. Priestley,et al.  The thermal structure of the lithosphere from shear wave velocities , 2006 .

[14]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[15]  L. Stixrude,et al.  Mineralogy and elasticity of the oceanic upper mantle: Origin of the low‐velocity zone , 2005 .

[16]  Takeyuki Uchida,et al.  In situ measurements of sound velocities and densities across the orthopyroxene → high-pressure clinopyroxene transition in MgSiO3 at high pressure , 2004 .

[17]  J. Gerald,et al.  Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications , 2004 .

[18]  J. Gerald,et al.  Grain-size-sensitive seismic wave attenuation in polycrystalline olivine , 2002 .

[19]  P. Richet,et al.  High-temperature heat capacity of grossular (Ca3Al2Si3O12), enstatite (MgSiO3), and titanite (CaTiSiO5) , 1999 .

[20]  B. Reynard,et al.  The effect of iron on the P21lc to C2/c transition in (Mg,Fe)SiO3 clinopyroxenes , 1999 .

[21]  B. Reynard,et al.  A Raman spectroscopic study of shock-wave densification of vitreous silica , 1999 .

[22]  Michael A. Carpenter,et al.  Elastic anomalies in minerals due to structural phase transitions , 1998 .

[23]  John A. Orcutt,et al.  Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment , 1998, Science.

[24]  S. Karato,et al.  Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle , 1998 .

[25]  S. Ghose,et al.  A transitional structural state and anomalous Fe-Mg order-disorder in Mg-rich orthopyroxene, (Mg0.75Fe0.25)2Si2O6 , 1995 .

[26]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[27]  R. Angel,et al.  Stability of high-density clinoenstatite at upper-mantle pressures , 1992, Nature.

[28]  M. Kitamura,et al.  Phase transition in Ca-poor clinopyroxenes , 1991 .

[29]  T. Gasparik,et al.  Reversals of the orthoenstatite‐clinoenstatite transition at high pressures and high temperatures , 1990 .

[30]  J. Bass Elasticity of grossular and spessartite garnets by Brillouin spectroscopy , 1989 .

[31]  D. Forsyth,et al.  The anisotropic structure of the upper mantle in the Pacific , 1989 .

[32]  D. Anderson,et al.  A model of dislocation-controlled rheology for the mantle , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[33]  C. Prewitt,et al.  Orthoferrosilite : High-temperature crystal chemistry , 2022 .

[34]  Cheng-Hong Chen,et al.  The system Mg2SiO4-SiO2 at pressures up to 25 kilobars , 1975 .

[35]  J. Smyth Experimental Study on the Polymorphism of Enstatite , 1974 .

[36]  F. Seifert,et al.  Solid solubility of Al2O3 in enstatite at high temperatures and 1–5 kb water pressure , 1972 .

[37]  P. Tannenwald,et al.  Temperature Dependence of Raman Linewidth and Shift inα-Quartz , 1969 .

[38]  I. Kushiro,et al.  Effect of Water on the Melting of Enstatite , 1968 .

[39]  F. R. Boyd,et al.  Effects of pressure on the melting and polymorphism of enstatite, MgSiO3 , 1964 .

[40]  Joseph V. Smith,et al.  A Structural Explanation of the Polymorphism and Transitions of $$MgSiO_{3}$$ , 1961, The Journal of Geology.

[41]  J. Smith The crystal structure of proto‐enstatite, MgSiO3 , 1959 .

[42]  F. Lucazeau,et al.  Temperatures, Heat, and Energy in the Mantle of the Earth , 2007 .

[43]  SHrcrrro Susuo,et al.  The crystal structure of high clinoferrosilite , 2007 .

[44]  S. Sinogeikin,et al.  Novel phase transition in orthoenstatite , 2004 .

[45]  S. Sinogeikin,et al.  Compact high-temperature cell for Brillouin scattering measurements , 2000 .

[46]  J. Smyth Protoenstatite: a crystal-structure refinement at 1100°C , 1971 .

[47]  H. Takeda,et al.  X-Ray Study of the Phase Transformations of Enstatite , 1969 .