MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE

We report cosmic microwave background (CMB) power-spectrum measurements from the first 100?deg2 field observed by the South Pole Telescope (SPT) at 150 and 220?GHz. On angular scales where the primary CMB anisotropy is dominant, ? 3000, the SPT power spectrum is consistent with the standard ?CDM cosmology. On smaller scales, we see strong evidence for a point-source contribution, consistent with a population of dusty, star-forming galaxies. After we mask bright point sources, anisotropy power on angular scales of 3000 < ? < 9500 is detected with a signal-to-noise ratio 50 at both frequencies. We combine the 150 and 220?GHz data to remove the majority of the point-source power and use the point-source-subtracted spectrum to detect Sunyaev-Zel'dovich (SZ) power at 2.6?. At ? = 3000, the SZ power in the subtracted bandpowers is 4.2 ? 1.5 ?K2, which is significantly lower than the power predicted by a fiducial model using WMAP5 cosmological parameters. This discrepancy may suggest that contemporary galaxy cluster models overestimate the thermal pressure of intracluster gas. Alternatively, this result can be interpreted as evidence for lower values of ?8. When combined with an estimate of the kinetic SZ contribution, the measured SZ amplitude shifts ?8 from the primary CMB anisotropy derived constraint of 0.794 ? 0.028 down to 0.773 ? 0.025. The uncertainty in the constraint on ?8 from this analysis is dominated by uncertainties in the theoretical modeling required to predict the amplitude of the SZ power spectrum for a given set of cosmological parameters.

[1]  E. Komatsu,et al.  Sunyaev-Zeldovich Fluctuations from Spatial Correlations between Clusters of Galaxies , 1999, The Astrophysical journal.

[2]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[3]  The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground , 2008 .

[4]  W. C. Jones,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[5]  K. Dawson,et al.  Final Results from the BIMA CMB Anisotropy Survey and Search for a Signature of the Sunyaev-Zel'dovich Effect , 2006, astro-ph/0602413.

[6]  Edinburgh,et al.  A 1200-μm MAMBO survey of ELAIS N2 and the Lockman Hole - I. Maps, sources and number counts , 2004, astro-ph/0405361.

[7]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .

[8]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[9]  Peter A. R. Ade,et al.  The South Pole Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[10]  T. Rodet,et al.  Correlated Anisotropies in the Cosmic Far-Infrared Background Detected by the Multiband Imaging Photometer for Spitzer: Constraint on the Bias , 2007, 0707.2443.

[11]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[12]  A. Taylor,et al.  SMALL ANGULAR SCALE MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND TEMPERATURE POWER SPECTRUM FROM QUaD , 2009, 0901.4334.

[13]  P. A. R. Ade,et al.  A SEARCH FOR COSMIC MICROWAVE BACKGROUND ANISOTROPIES ON ARCMINUTE SCALES WITH BOLOCAM , 2008, 0805.3151.

[14]  Unbiased estimation of an angular power spectrum , 2004, astro-ph/0402428.

[15]  O. Zahn,et al.  SHARPENING THE PRECISION OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2009, 0903.5322.

[16]  Astrophysics,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 SPECTRAL ENERGY DISTRIBUTION OF RADIO SOURCES IN NEARBY CLUSTERS OF GALAXIES: IMPLICATIONS FOR SUNYAEV-ZEL’DOVICH EFFECT SURVEYS , 2022 .

[17]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[18]  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 6/22/04 EFFECTS OF COOLING AND STAR FORMATION ON THE BARYON FRACTIONS IN CLUSTERS , 2005 .

[19]  J. Weller,et al.  Accurate Realizations of the Ionized Gas in Galaxy Clusters: Calibrating Feedback , 2006, astro-ph/0612663.

[20]  The Influence of Nonuniform Reionization on the CMB , 2005, astro-ph/0503166.

[21]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[22]  Effects of Submillimeter and Radio Point Sources on the Recovery of Sunyaev-Zel'dovich Galaxy Cluster Parameters , 2003, astro-ph/0309643.

[23]  Jeremiah P. Ostriker,et al.  SIMULATIONS OF THE MICROWAVE SKY , 2009, 0908.0540.

[24]  Princeton University,et al.  Probing Early Structure Formation with Far-Infrared Background Correlations , 2000, astro-ph/0009151.

[25]  J. Bond,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/26/04 , 2022 .

[26]  James J. Bock,et al.  Bolocam: a millimeter-wave bolometric camera , 1998, Astronomical Telescopes and Instrumentation.

[27]  E. Leitch,et al.  IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD , 2009, 0906.1003.

[28]  XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars , 2004, astro-ph/0405575.

[29]  Douglas Scott,et al.  SCUBA-2: a 10,000-pixel submillimeter camera for the James Clerk Maxwell Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[30]  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[31]  Hilo,et al.  SCUBA: A Common - user submillimetre camera operating on the James Clerk Maxwell telescope , 1998, astro-ph/9809122.

[32]  Roberto Ricci,et al.  Predictions for high-frequency radio surveys of extragalactic sources , 2005 .

[33]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[34]  Eugene E. Haller,et al.  Bolometer array development at the Max-Planck-Institut fuer Radioastronomie , 1998, Astronomical Telescopes and Instrumentation.

[35]  Uros Seljak,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002 .

[36]  C. I. O. Technology.,et al.  AzTEC millimetre survey of the COSMOS field – I. Data reduction and source catalogue , 2008, 0801.2779.

[37]  L. Knox Cosmic Microwave Background Anisotropy Window Functions Revisited , 1999 .

[38]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[39]  G. Rieke,et al.  IR Observations of MS 1054–03: Star Formation and Its Evolution in Rich Galaxy Clusters , 2007, 0704.0953.

[40]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[41]  M. Halpern,et al.  Optical design of the atacama cosmology telescope and the millimeter bolometric array camera. , 2006, Applied optics.

[42]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[43]  C. Baccigalupi,et al.  Astrophysical and cosmological information from large-scale submillimetre surveys of extragalactic sources , 2007, astro-ph/0703210.

[44]  Adrian T. Lee,et al.  CONSTRAINTS ON THE HIGH-ℓ POWER SPECTRUM OF MILLIMETER-WAVE ANISOTROPIES FROM APEX-SZ , 2009, 0904.3939.

[45]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[46]  The Balloon-borne Large Aperture Submillimeter Telescope: BLAST , 2007, 0711.3465.

[47]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[48]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[49]  Amber D. Miller,et al.  A MEASUREMENT OF ARCMINUTE ANISOTROPY IN THE COSMIC MICROWAVE BACKGROUND WITH THE SUNYAEV–ZEL’DOVICH ARRAY , 2009, 0901.4342.

[50]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[51]  James J. Bock,et al.  BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIES , 2009, 0904.1200.

[52]  P. A. R. Ade,et al.  ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4315.

[53]  Lloyd Knox,et al.  Correlations in the Far-Infrared Background , 1999, astro-ph/9906399.

[54]  Adrian T. Lee,et al.  South Pole Telescope optics. , 2008, Applied optics.

[55]  J. Beeman,et al.  The Large APEX BOlometer CAmera LABOCA , 2009, 0903.1354.

[56]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.