Modeling of Biodiesel Multicomponent Systems with the Cubic-Plus-Association (CPA) Equation of State

To supply biodiesel with the quality levels required by the standards for alternative fuels, the separation and purification units are extremely important in the biodiesel production plants. The correct knowledge and description of the phase equilibria in systems composed by transesterification products is essential for a correct operation and optimization of the purification process. For that purpose, the cubic-plus-association equation of state (CPA EoS) was here applied to model the phase equilibria of multicomponent systems common to biodiesel production and purification processes. It is shown that the CPA EoS can provide a good description of the liquid−liquid equilibria of multicomponent mixtures containing alcohols, glycerol, and fatty acid esters in the temperature range of operation of the separation units in biodiesel plants. As the liquid−liquid phase equilibrium description depends on the EoS parameters, a discussion is also presented about the best set of parameters and the method to estimate...

[1]  João A. P. Coutinho,et al.  Mutual solubilities of hydrocarbons and water with the CPA EoS , 2007 .

[2]  M. Michelsen,et al.  Application of the Cubic-Plus-Association (CPA) Equation of State to Complex Mixtures with Aromatic Hydrocarbons , 2006 .

[3]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[4]  E. Weidner,et al.  Biodiesel-Transesterification of Biological Oils with Liquid Catalysts: Thermodynamic Properties of Oil−Methanol−Amine Mixtures , 2005 .

[5]  M. Michelsen,et al.  Extension of the Cubic-plus-Association (CPA) Equation of State to Amines , 2005 .

[6]  Dimitrios P. Tassios,et al.  An Equation of State for Associating Fluids , 1996 .

[7]  J. Duffield Biodiesel: Production and Economic Issues , 2007, Inhalation toxicology.

[8]  Bin Liang,et al.  Solubility of Multicomponent Systems in the Biodiesel Production by Transesterification of Jatropha curcas L. Oil with Methanol , 2006 .

[9]  M. Michelsen,et al.  Application of the Cubic-Plus-Association (CPA) Equation of State to Cross-Associating Systems , 2005 .

[10]  Esteban A. Brignole,et al.  Phase equilibria in ternary mixtures of methyl oleate, glycerol, and methanol , 2008 .

[11]  R. K. Code,et al.  Examination of ethanol-n-heptane, methanol-n-hexane systems using new vapor-liquid equilibrium still , 1972 .

[12]  A. Demirbas,et al.  Importance of biodiesel as transportation fuel , 2007 .

[13]  João A. P. Coutinho,et al.  Prediction of Water Solubility in Biodiesel with the CPA Equation of State , 2008 .

[14]  I. Marrucho,et al.  Description of the mutual solubilities of fatty acids and water with the CPA EoS , 2009 .

[15]  A. McAloon,et al.  A process model to estimate biodiesel production costs. , 2006, Bioresource technology.

[16]  J. Prausnitz,et al.  Phase Equilibria for Systems Containing Hydrocarbons, Water, and Salt: An Extended Peng−Robinson Equation of State , 1998 .

[17]  W. Asher,et al.  SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds , 2007 .

[18]  Ioannis G. Economou,et al.  Associating models and mixing rules in equations of state for water/hydrocarbon mixtures , 1997 .

[19]  R. Kaufmann,et al.  Alternatives to conventional crude oil: When, how quickly, and market driven? , 2008 .

[20]  Renzo Di Felice,et al.  Component Distribution between Light and Heavy Phases in Biodiesel Processes , 2008 .

[21]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules , 1990 .

[22]  M. Michelsen,et al.  Application of the CPA equation of state to organic acids , 2004 .

[23]  I. Nieuwoudt,et al.  Liquid−Liquid Equilibria for m-Cresol + o-Toluonitrile + Hexane + Water + (Glycerol or Triethylene Glycol) at 313.15 K , 1998 .

[24]  M. Dubé,et al.  Liquid−Liquid Equilibria of the Methyl Oleate−Glycerol−Hexane−Methanol System , 2008 .

[25]  L. C. Meher,et al.  Technical aspects of biodiesel production by transesterification—a review , 2006 .

[26]  E. Voutsas,et al.  Prediction of phase equilibria in water/alcohol/alkane systems , 1999 .

[27]  Galen J. Suppes,et al.  Distribution of methanol and catalysts between biodiesel and glycerin phases , 2005 .

[28]  Michael L. Michelsen,et al.  Physical properties from association models , 2001 .

[29]  J. Coutinho,et al.  Thermodynamic Modeling of the Aqueous Solubility of PAHs , 2009 .

[30]  E. Voutsas,et al.  Water/Hydrocarbon Phase Equilibria Using the Thermodynamic Perturbation Theory , 2000 .

[31]  M. Michelsen,et al.  Recent applications of the cubic-plus-association (CPA) equation of state to industrially important systems , 2005 .

[32]  João A. P. Coutinho,et al.  Prediction of cloud points of biodiesel , 2008 .

[33]  Aage Fredenslund,et al.  Group contribution method for the prediction of liquid densities as a function of temperature for solvents, oligomers, and polymers , 1991 .

[34]  Günter Wozny,et al.  Liquid−Liquid Phase Equilibrium in Glycerol−Methanol−Methyl Oleate and Glycerol−Monoolein−Methyl Oleate Ternary Systems , 2006 .

[35]  Robert O. Dunn,et al.  Low-temperature properties of alkyl esters of tallow and grease , 1997 .

[36]  I. Marrucho,et al.  Modeling the Liquid−Liquid Equilibria of Water + Fluorocarbons with the Cubic-Plus-Association Equation of State , 2007 .

[37]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[38]  António J. Queimada,et al.  Phase equilibria of glycerol containing systems and their description with the Cubic-Plus-Association (CPA) Equation of State , 2009 .

[39]  G. Kontogeorgis,et al.  Multicomponent phase equilibrium calculations for water–methanol–alkane mixtures , 1999 .

[40]  B. B. França,et al.  Liquid−Liquid Equilibria for Castor Oil Biodiesel + Glycerol + Alcohol† , 2009 .

[41]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .