Radar Observations of Asteroids 1 Ceres, 2 Pallas, and 4 Vesta

Asteroids 1 Ceres, 2 Pallas, and 4 Vesta were observed with the 13-cm Arecibo radar and the 3.5-cm Goldstone radar during several apparitions between 1981 and 1995. These observations help to characterize the objects' surface properties. Echoes from Ceres and Pallas are ∼95% polarized (μC= σSC/σOC≈ 0.05) in the sense expected for specular (mirror) reflection yet broadly distributed in Doppler frequency, thus revealing surfaces that are smoother than the Moon at decimeter scales but much rougher (rms slopes > 20°) on larger scales. Slopes on Ceres appear to be somewhat higher when viewed with the 3.5-cm wavelength, a trend that is observed for the terrestrial planets and the Moon. In contrast, echoes from Vesta are significantly depolarized, indicating substantial near-surface complexity at scales near 13 cm (μC= 0.24 ± 0.04) and 3.5 cm (μC= 0.32 ± 0.04), which is probably a consequence of Vesta's relatively strong basaltic surface material and may be a signature of large impact features inferred to be present on the surface. The low radar albedos of Ceres (σOC= 0.042 ± 0.006) and Pallas (σOC= 0.075 ± 0.011) are in the range expected for surfaces with a carbonaceous chondrite mineralogy. Pallas' distinctly higher albedo implies a ∼35% higher surface density, which could result from a lower regolith porosity and/or a higher specific gravity (zero-porosity density). Given a porosity of 45%, the specific gravities of the surface materials on Ceres and Pallas would be ∼2.3 and ∼3.0 g cm−3, respectively, which would be consistent with (1) the presence of an additional silicate component on Pallas' surface (as inferred from spectroscopic observations) and (2) recent mass estimates, which suggest a higher mean (volume-averaged) density for Pallas than for Ceres.

[1]  R. S. Hudson,et al.  Shape of Asteroid 4769 Castalia (1989 PB) from Inversion of Radar Images , 1994, Science.

[2]  L. Lebofsky,et al.  The composition of asteroid 2 Pallas and its relation to primitive meteorites , 1983 .

[3]  F. Rigaut,et al.  Ceres Surface Properties by High-Resolution Imaging from Earth , 1993 .

[4]  Radar Image of Asteroid 1989 PB , 1990, Science.

[5]  D. Davis,et al.  Collisional history of asteroids: Evidence from Vesta and the Hirayama families , 1985 .

[6]  G. H. Pettengill,et al.  Physical properties of the planets and satellites from radar observations. , 1978 .

[7]  Irwin I. Shapiro,et al.  Planetary radar astronomy , 1968, IEEE Spectrum.

[8]  I. Shapiro,et al.  Mainbelt Asteroids: Dual-Polarization Radar Observations , 1985, Science.

[9]  I. Shapiro,et al.  Radar and photoelectric observations of asteroid 2100 Ra-Shalom , 1984 .

[10]  D. J. Tholen,et al.  Asteroid taxonomic classifications , 1989 .

[11]  E. K. Hege,et al.  Speckle interferometry of asteroids IV. Reconstructed images of 4 Vesta , 1988 .

[12]  E. Tedesco,et al.  Worldwide photometry and lightcurve observations of 1 Ceres during the 1975–1976 apparition , 1983 .

[13]  M. E. Tiuri,et al.  Radio Astronomy Receivers , 1964, IEEE Transactions on Military Electronics.

[14]  L. Lebofsky,et al.  The 1.7- to 4.2-μm spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals , 1981 .

[15]  N. Lanciano,et al.  Rotational properties of asteroids 2,12,80, 145 and 354 obtained by photoelectric photometry , 1985 .

[16]  Larry A. Lebofsky,et al.  The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt , 1990 .

[17]  B. Jakosky,et al.  Interpretation of planetary radar observations: the relationship between actual and inferred slope distributions , 1993 .

[18]  H. Matthews,et al.  Millimeter and Submillimeter Observations of the Asteroid 4 Vesta , 1992 .

[19]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[20]  R. Greenberg,et al.  Regolith development and evolution on asteroids and the moon , 1979 .

[21]  G. Pettengill,et al.  High-resolution radar maps of the lunar surface at 3.8-cm wavelength , 1974 .

[22]  Michael P. Sulzer,et al.  Recent incoherent scatter techniques , 1989 .

[23]  C. A. Pearse Photometry and polarimetry of the moon and their relationship to physical properties of the lunar surface , 1963 .

[24]  P. Farinella,et al.  Flattening, pole, and albedo features of 4 Vesta from photometric data , 1987 .

[25]  G. Pettengill,et al.  Radar detection of Vesta , 1980 .

[26]  L. Lebofsky,et al.  Spectroscopic evidence for aqueous alteration products on the surfaces of low-albedo asteroids , 1980 .

[27]  Jack Drummond,et al.  Speckle interferometry of asteroids , 1988 .

[28]  J. V. Lambert Occultation and Lightcurve Analysis: the Figure of 2 Pallas , 1985 .

[29]  A. Harris,et al.  Asteroid lightcurve parameters , 1989 .

[30]  Photopolarimetry of asteroids , 1989 .

[31]  Steven J. Ostro,et al.  Shape and Non-Principal Axis Spin State of Asteroid 4179 Toutatis , 1995, Science.

[32]  D. Campbell,et al.  (abstract) Asteroids and Comets: Future Imaging Opportunities with Earth-Based Radar Systems , 1994 .

[33]  Steven J. Ostro,et al.  Mars - Dual-polarization radar observations with extended coverage , 1985 .

[34]  G. Pettengill,et al.  Venus global radar reflectivity and correlations with elevation , 1985 .

[35]  R. Binzel 2 Pallas: 1982 and 3 lightcurves and a new pole solution , 1984 .

[36]  S. Ostro Physical properties of asteroids from radar observations , 1987 .

[37]  H. Maitzen,et al.  Rotation and Photometric Characteristics of Pallas , 1976 .

[38]  I. Shapiro,et al.  Radar observations of asteroid 1 Ceres , 1979 .

[39]  A. McEwen,et al.  First Images of Asteroid 243 Ida , 1994, Science.

[40]  M. Cintala,et al.  Characteristics of the cratering process on small satellites and asteroids , 1978 .

[41]  I. Shapiro,et al.  Radar observations of asteroid 1685 Toro , 1983 .

[42]  B. Glass Introduction to Planetary Geology , 1982 .

[43]  R. Greeley,et al.  Ejecta Blocks on 243 Ida and on Other Asteroids , 1996 .

[44]  I. Shapiro,et al.  Europa, Ganymede, and Callisto - New radar results from Arecibo and Goldstone , 1992 .

[45]  J. Piironen,et al.  Asteroid photometric catalogue , 1996 .

[46]  Steven J. Ostro,et al.  Doppler radar imaging of spherical planetary surfaces , 1990 .

[47]  R. Simpson,et al.  Radar scattering laws for the lunar surface , 1982 .

[48]  R. S. Hudson,et al.  Mars radar scattering - Arecibo/Goldstone results at 12.6- and 3.5-cm wavelengths , 1992 .

[49]  Michael J. Gaffey,et al.  Surface Lithologic Heterogeneity of Asteroid 4 Vesta , 1997 .

[50]  N. White,et al.  The diameter of Pallas from its occultation of SAO 85009 , 1979 .

[51]  L. Milano,et al.  2 Pallas pole revisited , 1983 .

[52]  M. Shepard,et al.  Self‐affine (fractal) topography: Surface parameterization and radar scattering , 1995 .

[53]  M. Gaffey,et al.  Vesta: HST Observations of Shape, Spin Pole, and Surface Features , 1995 .

[54]  Scott Hudson,et al.  Three‐dimensional reconstruction of asteroids from radar observations , 1994 .

[55]  R. Greenberg,et al.  Asteroidal regoliths: what we do not know , 1989 .

[56]  T. Hagfors,et al.  Study of radio echoes from the Moon at 23 centimeters wavelength , 1966 .

[57]  J. Chandler,et al.  Mars radar mapping : strong backscatter from the Elysium basin and outflow channel , 1992 .

[58]  Martin A. Slade,et al.  Mercury: Full-disk radar images and the detection and stability of ice at the North Pole , 1993 .

[59]  I. Shapiro,et al.  Radar Observations of Asteroids 7 Iris, 9 Metis, 12 Victoria, 216 Kleopatra, and 654 Zelinda , 1995 .

[60]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[61]  H. Tor,et al.  A Study of the Depolarization of Lunar Radar Echoes , 1967 .

[62]  W. J. Cocke,et al.  Triaxial ellipsoid dimensions and rotational pole of 2 Pallas from two stellar occultations , 1989 .

[63]  A. Harris Book reviewAsteroid photometric catalog: By C.-I. Lagerkvist, M. A. Barucci, M. T. Capria, M. Fulchignoni, L. Guerriero, E. Perozzi, and V. Zappalà. Consiglio Nazionale delle Ricerche, Rome, 1987. Approx 2000 pp., loose-leaf , 1988 .

[64]  R. Binzel,et al.  The size and shape of (2) Pallas from the 1983 occultation of 1 Vulpeculae , 1990 .

[65]  Glenn Schneider,et al.  The size, shape, density, and Albedo of Ceres from its occultation of BD+8°471 , 1987 .

[66]  Z. Knežević,et al.  Rotation axes of asteroids: Results for 14 objects , 1984 .

[67]  Michael P. Sulzer,et al.  A radar technique for high range resolution incoherent scatter autocorrelation function measurements utilizing the full average power of klystron radars , 1986 .

[68]  I. Shapiro,et al.  Asteroid 1986 DA: Radar Evidence for a Metallic Composition , 1991, Science.

[69]  R. S. Hudson Radar imaging for aircraft identification and planetary astronomy , 1991 .

[70]  Per Magnusson,et al.  Distribution of spin axes and senses of rotation for 20 large asteroids , 1986 .

[71]  Donald W. McCarthy,et al.  High Resolution Images of Vesta at 1.65 μm , 1994 .

[72]  S. B. Novikov,et al.  Shape and size of asteroid 4 Vesta : speckle interferometry and polarimetry , 1991 .

[73]  R. Goldstein,et al.  Radar observations at 3.5 and 12.6 cm wavelength of asteroid 433 Eros , 1976 .

[74]  G. Leonard Tyler Comparison of quasi-specular radar scatter from the moon with surface parameters obtained from images , 1979 .