A structured doubling algorithm for nonsymmetric algebraic Riccati equations (a singular case)

In this paper we propose a structured doubling algorithm (SDA) for the computation of the minimal nonnegative solutions to the nonsymmetric algebraic Riccati equation (NARE) and its dual equation simultaneously, for a singular case. Similar to the Newton’s method we establish a global and linear convergence for SDA under the singular condition, using only elementary matrix theory. Numerical experiments show that the SDA algorithm is feasible and eective, outperforms Newton’s method for NARE. Furthermore, SDA algorithm can easily be applied to solving the quadratic matrix equation, arising form quasi-birth-death (QBD) processes, which is dierent from the existing Latouchu-Ramaswami (LR) algorithm. The convergence of SDA is shown to be linear at least with rate 1 when QBD is null recurrent.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  Alan J. Laub,et al.  On the Iterative Solution of a Class of Nonsymmetric Algebraic Riccati Equations , 2000, SIAM J. Matrix Anal. Appl..

[3]  David Williams,et al.  A ‘potential-theoretic’ note on the quadratic Wiener-Hopf equation for Q-matrices , 1982 .

[4]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[5]  Jonq Juang,et al.  Existence of algebraic matrix Riccati equations arising in transport theory , 1995 .

[6]  L. Rogers Fluid Models in Queueing Theory and Wiener-Hopf Factorization of Markov Chains , 1994 .

[7]  Martin T. Barlow,et al.  Wiener-hopf factorization for matrices , 1980 .

[8]  Chun-Hua Guo,et al.  Convergence Analysis of the Latouche-Ramaswami Algorithm for Null Recurrent Quasi-Birth-Death Processes , 2001, SIAM J. Matrix Anal. Appl..

[9]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[10]  Chun-Hua Guo,et al.  Efficient methods for solving a nonsymmetric algebraic Riccati equation arising in stochastic fluid models , 2006 .

[11]  Leonard Rogers,et al.  Computing the invariant law of a fluid model , 1994 .

[12]  Beatrice Meini,et al.  Solving matrix polynomial equations arising in queueing problems , 2002 .

[13]  Wen-Wei Lin,et al.  Nonsymmetric Algebraic Riccati Equations and Hamiltonian-like Matrices , 1998, SIAM J. Matrix Anal. Appl..

[14]  Beatrice Meini,et al.  On the Solution of a Nonlinear Matrix Equation Arising in Queueing Problems , 1996, SIAM J. Matrix Anal. Appl..

[15]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[16]  David Williams,et al.  A martingale approach to some Wiener-Hopf problems, II , 1982 .

[17]  Beatrice Meini,et al.  Numerical methods for structured Markov chains , 2005 .

[18]  Tom Burr,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 2001, Technometrics.

[19]  Wen-Wei Lin,et al.  A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation , 2006, Numerische Mathematik.

[20]  Noah H. Rhee,et al.  A Shifted Cyclic Reduction Algorithm for Quasi-Birth-Death Problems , 2002, SIAM J. Matrix Anal. Appl..

[21]  Chun-Hua Guo,et al.  Nonsymmetric Algebraic Riccati Equations and Wiener-Hopf Factorization for M-Matrices , 2001, SIAM J. Matrix Anal. Appl..

[22]  Vaidyanathan Ramaswami,et al.  A logarithmic reduction algorithm for quasi-birth-death processes , 1993, Journal of Applied Probability.