M{\o}ller operators and Hadamard states for Dirac fields with MIT boundary conditions

The aim of this paper is to prove the existence of Hadamard states for Dirac fields coupled with MIT boundary conditions on any globally hyperbolic manifold with timelike boundary. This is achieved by introducing a geometric Møller operator which implements a unitary isomorphism between the spaces of L-initial data of particular symmetric systems we call weakly-hyperbolic and which are coupled with admissible boundary conditions. In particular, we show that for Dirac fields with MIT boundary conditions, this isomorphism can be lifted to a ∗-isomorphism between the algebras of Dirac fields and that any Hadamard state can be pulled back along this ∗-isomorphism preserving the singular structure of its two-point distribution.

[1]  T. Goldman,et al.  Bag boundary conditions for confinement in the qq-bar relative coordinate , 1981 .

[2]  Christian Bär Green-Hyperbolic Operators on Globally Hyperbolic Spacetimes , 2013, 1310.0738.

[3]  M. Di Francesco,et al.  Deterministic particle approximation for nonlocal transport equations with nonlinear mobility , 2018, Journal of Differential Equations.

[4]  C. Dappiaggi,et al.  Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime , 2009, 0907.1034.

[5]  C. Dappiaggi,et al.  The Casimir Effect from the Point of View of Algebraic Quantum Field Theory , 2014, 1412.1409.

[6]  D. Vassiliev,et al.  Global Propagator for the Massless Dirac Operator and Spectral Asymptotics , 2020, Integral Equations and Operator Theory.

[7]  D. S. Betts Electromagnetism , 1977, Nature.

[8]  R. Wald,et al.  Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon , 1991 .

[9]  C. Dappiaggi,et al.  Constructing Hadamard States via an Extended Møller Operator , 2015, 1506.09122.

[10]  K. Fredenhagen,et al.  Quantum field theory on curved spacetimes: Axiomatic framework and examples , 2014, 1412.5125.

[11]  Michael Taylor,et al.  Reflection of singularities of solutions to systems of differential equations , 1975 .

[12]  C. Dappiaggi,et al.  A generalization of the propagation of singularities theorem on asymptotically anti‐de Sitter spacetimes , 2020, Mathematische Nachrichten.

[13]  Richard B. Melrose,et al.  Singularities of boundary value problems. I , 1978 .

[14]  R. Wald,et al.  Singularity structure of the two-point function in quantum field theory in curved spacetime, II , 1981 .

[15]  Mark Sweeny,et al.  Singularity structure of the two-point function in quantum field theory in curved spacetime , 1978 .

[16]  J. Wunsch,et al.  Diffraction for the Dirac–Coulomb Propagator , 2020, Annales Henri Poincaré.

[17]  V. Ivrii Microlocal Analysis, Sharp Spectral Asymptotics and Applications I , 2019 .

[18]  C. Gérard,et al.  On the adiabatic limit of Hadamard states , 2016, 1609.03080.

[19]  Simone Fagioli,et al.  Opinion formation systems via deterministic particles approximation , 2020, Kinetic & Related Models.

[20]  Guillaume Idelon-Riton Scattering theory for the Dirac equation on the Schwarzschild-Anti-de Sitter spacetime , 2014, 1412.0869.

[21]  R. Phillips,et al.  Local boundary conditions for dissipative symmetric linear differential operators , 1960 .

[22]  J. Flores,et al.  Structure of globally hyperbolic spacetimes-with-timelike-boundary , 2018, 1808.04412.

[23]  K. Fredenhagen,et al.  Algebraic Approach to Bose–Einstein Condensation in Relativistic Quantum Field Theory: Spontaneous Symmetry Breaking and the Goldstone Theorem , 2019, Annales Henri Poincaré.

[24]  Passivity and Microlocal Spectrum Condition , 2000, math-ph/0002021.

[25]  R. Verch,et al.  Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime , 2000, math-ph/0008029.

[26]  Dmitri Vassiliev,et al.  Invariant subspaces of elliptic systems II: spectral theory , 2021 .

[27]  F. Finster,et al.  The fermionic signature operator in de Sitter spacetime , 2019, Journal of Mathematical Analysis and Applications.

[28]  Christian Baer,et al.  Wave Equations on Lorentzian Manifolds and Quantization , 2007, 0806.1036.

[29]  V. Weisskopf,et al.  A New Extended Model of Hadrons , 1974 .

[30]  M. Benini,et al.  Algebraic Quantum Field Theory on Spacetimes with Timelike Boundary , 2017, Annales Henri Poincaré.

[31]  M. Benini,et al.  Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states , 2014, 1404.4551.

[32]  Thomas-Paul Hack,et al.  The Generalised Principle of Perturbative Agreement and the Thermal Mass , 2015, 1502.02705.

[33]  J. Zahn Generalized Wentzell Boundary Conditions and Quantum Field Theory , 2015, 1512.05512.

[34]  M. Nardmann Pseudo-Riemannian metrics with prescribed scalar curvature , 2004, math/0409435.

[35]  F. Finster,et al.  An integral representation for the massive Dirac propagator in Kerr geometry in Eddington-Finkelstein-type coordinates , 2016, 1606.01509.

[36]  M. Wrochna The holographic Hadamard condition on asymptotically anti-de Sitter spacetimes , 2016, 1612.01203.

[37]  Nadine Grosse,et al.  The Cauchy problem of the Lorentzian Dirac operator with APS boundary conditions , 2021, 2104.00585.

[38]  M. Levitin,et al.  Geometric wave propagator on Riemannian manifolds , 2019, Communications in Analysis and Geometry.

[39]  R. Jaffe,et al.  Baryon Structure in the Bag Theory , 1974 .

[40]  C. Dappiaggi,et al.  The Extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor , 2009, 0904.0612.

[41]  C. Dappiaggi,et al.  Fundamental solutions for the wave operator on static Lorentzian manifolds with timelike boundary , 2018, Letters in Mathematical Physics.

[42]  Claudio Dappiaggi,et al.  Fundamental solutions and Hadamard states for a scalar field with arbitrary boundary conditions on an asymptotically AdS spacetimes , 2021, Mathematical Physics, Analysis and Geometry.

[43]  The well-posedness of the Cauchy problem for the Dirac operator on globally hyperbolic manifolds with timelike boundary , 2018, 1806.06544.

[44]  F. Finster,et al.  The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states , 2015, 1501.05522.

[45]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[46]  Existence of Local Covariant Time Ordered Products of Quantum Fields in Curved Spacetime , 2001, gr-qc/0111108.

[47]  Christian G'erard,et al.  Hadamard states for quantized Dirac fields on Lorentzian manifolds of bounded geometry , 2021, Reviews in Mathematical Physics.

[48]  W. Pusz,et al.  Passive states and KMS states for general quantum systems , 1978 .

[49]  C. Dappiaggi,et al.  Non-existence of natural states for Abelian Chern–Simons theory , 2016, 1612.04080.

[50]  C. Dappiaggi,et al.  Ground state for a massive scalar field in the BTZ spacetime with Robin boundary conditions , 2017, 1708.00271.

[51]  Igor Khavkine,et al.  Algebraic QFT in Curved Spacetime and Quasifree Hadamard States: An Introduction , 2014, 1412.5945.

[52]  F. Finster,et al.  Self-Adjointness of the Dirac Hamiltonian for a Class of Non-Uniformly Elliptic Boundary Value Problems , 2015, 1512.00761.

[53]  J. Grant GLOBAL LORENTZIAN GEOMETRY , 2009 .

[54]  R. Verch,et al.  A local-to-global singularity theorem for quantum field theory on curved space-time , 1996 .

[55]  Conservation of the Stress Tensor in Perturbative Interacting Quantum Field Theory in Curved Spacetimes , 2004, gr-qc/0404074.

[56]  S. S. Gousheh,et al.  Fermionic Casimir energy in a three-dimensional box , 2010 .

[57]  Oran Gannot,et al.  PROPAGATION OF SINGULARITIES ON AdS SPACETIMES FOR GENERAL BOUNDARY CONDITIONS AND THE HOLOGRAPHIC HADAMARD CONDITION , 2018, Journal of the Institute of Mathematics of Jussieu.

[58]  C. G'erard Microlocal Analysis of Quantum Fields on Curved Spacetimes , 2019, 1901.10175.

[59]  András Vasy Propagation of singularities for the wave equation on manifolds with corners , 2005 .

[60]  F. Finster,et al.  The fermionic signature operator and quantum states in Rindler space-time , 2016, 1606.03882.

[61]  J. Yngvason,et al.  Advances in Algebraic Quantum Field Theory , 2015 .

[62]  Valter Moretti,et al.  Paracausal deformations of Lorentzian metrics and M{\o}ller isomorphisms in algebraic quantum field theory , 2021 .

[63]  Christian Baer,et al.  Classical and Quantum Fields on Lorentzian Manifolds , 2011, 1104.1158.

[64]  Richard B. Melrose,et al.  The Atiyah-Patodi-Singer Index Theorem , 1993 .

[65]  P. Gauduchon,et al.  Generalized cylinders in semi-Riemannian and spin geometry , 2003, math/0303095.

[66]  Kurt Friedrichs,et al.  Symmetric positive linear differential equations , 1958 .

[67]  R. Verch,et al.  The necessity of the Hadamard condition , 2013, 1307.5242.

[68]  S. Murro,et al.  A new class of Fermionic Projectors: Møller operators and mass oscillation properties , 2016, 1607.02909.

[69]  Ko Sanders Communications in Mathematical Physics Equivalence of the ( Generalised ) Hadamard and Microlocal Spectrum Condition for ( Generalised ) Free Fields in Curved Spacetime , 2010 .

[70]  Simone Fagioli,et al.  Solutions to aggregation–diffusion equations with nonlinear mobility constructed via a deterministic particle approximation , 2018, Mathematical Models and Methods in Applied Sciences.

[71]  H. Araki On Quasifree States of CAR and Bogoliubov Automorphisms , 1970 .

[72]  K. Sanders,et al.  Electromagnetism, Local Covariance, the Aharonov–Bohm Effect and Gauss’ Law , 2012, 1211.6420.