Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games
暂无分享,去创建一个
[1] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[2] B. Engquist,et al. Wavelet-Based Numerical Homogenization with Applications , 2002 .
[3] R. Vershynin,et al. One sketch for all: fast algorithms for compressed sensing , 2007, STOC '07.
[4] G. Fasshauer. Meshfree Methods , 2004 .
[5] I. Babuska,et al. Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .
[6] G. Wahba,et al. A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .
[7] Pablo A. Parrilo,et al. Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..
[8] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[9] Michael A. Osborne,et al. Probabilistic Integration: A Role for Statisticians in Numerical Analysis? , 2015 .
[10] Michael A. Osborne,et al. Probabilistic numerics and uncertainty in computations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[11] Ronald R. Coifman,et al. Multiscale Inversion of Elliptic Operators , 1998 .
[12] J. Duchon. Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^m$-splines , 1978 .
[13] Houman Owhadi,et al. Anomalous slow diffusion from perpetual homogenization , 2001, math/0105165.
[14] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[15] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[16] A. Copeland. Review: John von Neumann and Oskar Morgenstern, Theory of games and economic behavior , 1945 .
[17] Joel A. Tropp,et al. Recovery of short, complex linear combinations via /spl lscr//sub 1/ minimization , 2005, IEEE Transactions on Information Theory.
[18] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .
[19] Arkadi S. Nemirovsky,et al. Information-based complexity of linear operator equations , 1992, J. Complex..
[20] D. Myers. Kriging, cokriging, radial basis functions and the role of positive definiteness , 1992 .
[21] Marian Brezina,et al. Energy Optimization of Algebraic Multigrid Bases , 1998, Computing.
[22] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[23] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[24] Houman Owhadi,et al. On the Brittleness of Bayesian Inference , 2013, SIAM Rev..
[25] S. Spagnolo,et al. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche , 1968 .
[26] H. Ohanian,et al. The linear approximation , 2013 .
[27] Sudipto Guha,et al. Near-optimal sparse fourier representations via sampling , 2002, STOC '02.
[28] Irad Yavneh,et al. Why Multigrid Methods Are So Efficient , 2006, Computing in Science & Engineering.
[29] Antoine Gloria,et al. An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies , 2006, Multiscale Model. Simul..
[30] C. Scovel,et al. Brittleness of Bayesian inference and new Selberg formulas , 2013, 1304.7046.
[31] F. M. Larkin. Gaussian measure in Hilbert space and applications in numerical analysis , 1972 .
[32] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997, Numer. Linear Algebra Appl..
[33] Philipp Hennig,et al. Probabilistic Interpretation of Linear Solvers , 2014, SIAM J. Optim..
[34] H. Owhadi,et al. Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.
[35] J. Nash. NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.
[36] George Papanicolaou,et al. A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..
[37] M. Girolami,et al. Bayesian Solution Uncertainty Quantification for Differential Equations , 2013 .
[38] Zongmin Wu,et al. Local error estimates for radial basis function interpolation of scattered data , 1993 .
[39] B. Engquist,et al. Convergence of a Multigrid Method for Elliptic Equations with Highly Oscillatory Coefficients , 1997 .
[40] Yalchin Efendiev,et al. Multiscale finite element methods for porous media flows and their applications , 2007 .
[41] C. Chui,et al. Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .
[42] D. Bartuschat. Algebraic Multigrid , 2007 .
[43] J. E. H. Shaw,et al. A Quasirandom Approach to Integration in Bayesian Statistics , 1988 .
[44] Houman Owhadi,et al. Multiscale Homogenization with Bounded Ratios and Anomalous Slow Diffusion , 2001 .
[45] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[46] David Duvenaud,et al. Probabilistic ODE Solvers with Runge-Kutta Means , 2014, NIPS.
[47] J. Skilling. Bayesian Solution of Ordinary Differential Equations , 1992 .
[48] Houman Owhadi,et al. Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients , 2016, J. Comput. Phys..
[49] Ronald R. Coifman,et al. Signal and image representation in combined spaces , 1998 .
[50] K. St. A review of algebraic multigrid , 2001 .
[51] Panagiotis E. Souganidis,et al. Asymptotic and numerical homogenization , 2008, Acta Numerica.
[52] Klaus Ritter,et al. Bayesian numerical analysis , 2000 .
[53] A. O'Hagan,et al. Bayes–Hermite quadrature , 1991 .
[54] S. Kozlov. AVERAGING OF RANDOM OPERATORS , 1980 .
[55] W. Hackbusch,et al. A fast iterative method for solving poisson’s equation in a general region , 1978 .
[56] Jean Duchon,et al. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .
[57] Xiao-Hui Wu,et al. Challenges and Technologies in Reservoir Modeling , 2009 .
[58] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[59] W. Hackbusch,et al. An introduction to hierarchical matrices , 2001 .
[60] R. N. Desmarais,et al. Interpolation using surface splines. , 1972 .
[61] Douglas Stott Parker,et al. Using randomization to make recursive matrix algorithms practical , 1999, J. Funct. Program..
[62] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[63] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..
[64] William F. Moss,et al. Decay rates for inverses of band matrices , 1984 .
[65] Yalchin Efendiev,et al. Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..
[66] Yalchin Efendiev,et al. Spectral Element Agglomerate Algebraic Multigrid Methods for Elliptic Problems with High-Contrast Coefficients , 2011 .
[67] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[68] F. Otto,et al. Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics , 2013 .
[69] I. Babuska,et al. Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .
[70] J. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .
[71] Erich Novak,et al. Essays on the Complexity of Continuous Problems , 2009 .
[72] Klaus Ritter,et al. Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.
[73] Houman Owhadi,et al. Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..
[74] G. Beylkin,et al. A Multiresolution Strategy for Reduction of Elliptic PDEs and Eigenvalue Problems , 1998 .
[75] Henryk Wozniakowski,et al. Information-based complexity , 1987, Nature.
[76] Mario Bebendorf,et al. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .
[77] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[78] Houman Owhadi,et al. Optimal Uncertainty Quantification , 2010, SIAM Rev..
[79] Edward W. Packel,et al. The algorithm designer versus nature: A game-theoretic approach to information-based complexity , 1987, J. Complex..
[80] Thomas Y. Hou,et al. Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficient , 2015, 1508.00346.
[81] Jinchao Xu,et al. UNIFORM CONVERGENT MULTIGRID METHODS FOR ELLIPTIC PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS , 2008 .
[82] Assyr Abdulle,et al. Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..
[83] H. Owhadi,et al. Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.
[84] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets II: Implementation and Numerical Results , 1998, SIAM J. Sci. Comput..
[85] Michael A. Osborne,et al. Probabilistic Integration , 2015, ArXiv.
[86] Panayot S. Vassilevski,et al. On Two Ways of Stabilizing the Hierarchical Basis Multilevel Methods , 1997, SIAM Rev..
[87] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[88] Doron Levy,et al. On Wavelet-Based Numerical Homogenization , 2005, Multiscale Model. Simul..
[89] N. S. Barnett,et al. Private communication , 1969 .
[90] H. Owhadi,et al. Metric‐based upscaling , 2007 .
[91] Robert Lipton,et al. Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..
[92] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997 .
[93] A. Wald. Statistical Decision Functions Which Minimize the Maximum Risk , 1945 .
[94] E. Rowland. Theory of Games and Economic Behavior , 1946, Nature.
[95] J. Neumann. Zur Theorie der Gesellschaftsspiele , 1928 .
[96] Stefan A. Sauter,et al. The AL Basis for the Solution of Elliptic Problems in Heterogeneous Media , 2012, Multiscale Model. Simul..
[97] Houman Owhadi,et al. Toward Machine Wald , 2015, 1508.02449.
[98] A. Brandt. Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems , 1973 .
[99] Xin Wang,et al. Transfer-of-approximation Approaches for Subgrid Modeling , 2012 .
[100] Henryk Wozniakowski. Probabilistic setting of information-based complexity , 1986, J. Complex..
[101] Edmond Chow,et al. Multilevel block factorizations in generalized hierarchical bases , 2003, Numer. Linear Algebra Appl..
[102] Panayot S. Vassilevski,et al. General Constrained Energy Minimization Interpolation Mappings for AMG , 2010, SIAM J. Sci. Comput..
[103] Guillaume Bal,et al. Corrector Theory for MsFEM and HMM in Random Media , 2010, Multiscale Model. Simul..
[104] Houman Owhadi,et al. Bayesian Numerical Homogenization , 2014, Multiscale Model. Simul..
[105] Panayot S. Vassilevski,et al. Multilevel Preconditioning Matrices and Multigrid V-Cycle Methods , 1989 .
[106] H. Yserentant. On the multi-level splitting of finite element spaces , 1986 .
[107] Patrick R. Conrad,et al. Probability Measures for Numerical Solutions of Differential Equations , 2015, 1506.04592.
[108] G. Beylkin,et al. A Multiresolution Strategy for Numerical Homogenization , 1995 .
[109] R. Bank,et al. The hierarchical basis multigrid method , 1988 .
[110] H. Poincaré. Calcul des Probabilités , 1912 .
[111] John E. Osborn,et al. Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..
[112] M. Urner. Scattered Data Approximation , 2016 .
[113] Jean Duchon,et al. Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.
[114] C. Scovel,et al. Brittleness of Bayesian Inference Under Finite Information in a Continuous World , 2013, 1304.6772.
[115] Tony F. Chan,et al. An Energy-minimizing Interpolation for Robust Multigrid Methods , 1999, SIAM J. Sci. Comput..
[116] Mario Bebendorf,et al. Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth coefficients , 2004, Math. Comput..
[117] J. Mandel,et al. Energy optimization of algebraic multigrid bases , 1999 .
[118] William W. Symes. Transfer of approximation and numerical homogenization of hyperbolic boundary value problems with a continuum of scales , 2010 .
[119] Grégoire Allaire,et al. A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..
[120] R. Horne,et al. Computing Absolute Transmissibility in the Presence of Fine-Scale Heterogeneity , 1987 .
[121] F. Murat,et al. Compacité par compensation , 1978 .
[122] Jinchao Xu,et al. On an energy minimizing basis for algebraic multigrid methods , 2004 .