Sea-Land Segmentation Using Deep Learning Techniques for Landsat-8 OLI Imagery

Abstract Automated coastline extraction from optical satellites is fundamental to coastal mapping, and sea-land segmentation is the core technology of coastline extraction. Deep convolutional neural networks (DCNNs) have performed well in semantic segmentation in recent years. However, sea-land segmentation using deep learning techniques remains a challenging task, due to the lack of a benchmark dataset and the difficulty of deciding which semantic segmentation model to use. We present a comparative framework of sea-land segmentation to Landsat-8 OLI imagery via semantic segmentation in deep learning techniques. Three issues are investigated: (1) constructing a sea-land benchmark dataset using Landsat-8 Operational Land Imager (OLI) imagery consisting of 18,000 km2 of coastline around China; (2) evaluating the feasibility and performance of sea-land segmentation by comparing the accuracy assessment, time complexity, spatial complexity and stability of state-of-the-art DCNNs methods; (3) choosing the most suitable semantic segmentation model for sea-land segmentation in accordance with Akaike information criterion (AIC) and Bayesian information criterion (BIC) model selection. Results show that the average test accuracy achieves over 99% accuracy, and the mean Intersection over Unions (mean IoU) is above 92%. These findings demonstrate that the Fully Convolutional DenseNet (FC-DenseNet) performs better than other state-of-the-art methods in sea-land segmentation, based on both AIC and BIC. Considering training time efficiency, DeeplabV3+ performs better for sea-land segmentation. The sea-land segmentation benchmark dataset is available at: https://pan.baidu.com/s/1BlnHiltOLbLKe4TG8lZ5xg.

[1]  F. Radicioni,et al.  Coastline Detection Using High Resolution Multispectral Satellite Images , 2012 .

[2]  Claudio Parente,et al.  Coastline extraction using high resolution WorldView-2 satellite imagery , 2014 .

[3]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[4]  Wei Li,et al.  DeepUNet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[5]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[6]  Ian L Turner,et al.  Shoreline Definition and Detection: A Review , 2005 .

[7]  Ki-Hwan Kim,et al.  Performance analysis and optimization of three-dimensional FDTD on GPU using roofline model , 2011, Comput. Phys. Commun..

[8]  Seunghoon Hong,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[9]  Vesa Laine,et al.  Antarctic ice sheet and sea ice regional albedo and temperature change, 1981–2000, from AVHRR Polar Pathfinder data , 2008 .

[10]  Gulcan Sarp,et al.  Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey , 2017 .

[11]  Carlos López-Martínez,et al.  Polarimetric SAR speckle noise model , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Gaofeng Meng,et al.  SeNet: Structured Edge Network for Sea–Land Segmentation , 2017, IEEE Geoscience and Remote Sensing Letters.

[14]  Zhenwei Shi,et al.  Maritime Semantic Labeling of Optical Remote Sensing Images with Multi-Scale Fully Convolutional Network , 2017, Remote. Sens..

[15]  Fabio Del Frate,et al.  An application of COSMO-Sky Med to coastal erosion studies , 2012 .

[16]  Hideo Joho,et al.  Deliverable type: Contributing WP: , 2022 .

[17]  Sebastian Nowozin,et al.  Optimal Decisions from Probabilistic Models: The Intersection-over-Union Case , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Abd Manan Samad,et al.  Shoreline data extraction from QuickBird satellite image using semi-automatic technique , 2014, 2014 IEEE 10th International Colloquium on Signal Processing and its Applications.

[19]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[20]  F. Ling,et al.  Analysis of Coastline Extraction from Landsat-8 OLI Imagery , 2017 .

[21]  Stan Szpakowicz,et al.  Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation , 2006, Australian Conference on Artificial Intelligence.

[22]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[23]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Shenxin,et al.  Statistical Model and Estimation of Inland Riverine Turbidity with Landsat 8 OLI Images: A Case Study , 2017 .

[25]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[27]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[28]  Y. Ouma,et al.  A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data , 2006 .

[29]  Chenghu Zhou,et al.  Scale effects of the continental coastline of China , 2011 .

[30]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[31]  Francesco Mancini,et al.  Image classification methods applied to shoreline extraction on very high-resolution multispectral imagery , 2014 .

[32]  H. Bozdogan Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .

[33]  Anant Madabhushi,et al.  A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions in histopathological images , 2016, Neurocomputing.

[34]  Nils Lid Hjort,et al.  Model Selection and Model Averaging: Contents , 2008 .

[35]  C. Violante Rocky coast: geological constraints for hazard assessment , 2009 .

[36]  R Shreeja,et al.  Image Classification Methods , 2014 .

[37]  Patrick Weber,et al.  OpenStreetMap: User-Generated Street Maps , 2008, IEEE Pervasive Computing.

[38]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Ying Wang,et al.  Chapter Thirteen Tidal flats and associated muddy coast of China , 2002 .

[40]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[41]  Iasonas Kokkinos,et al.  Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs , 2014, ICLR.

[42]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  J. Main The One Hundred , 1954 .

[45]  Mark Cutler,et al.  Remote sensing of upland vegetation: the potential of high spatial resolution satellite sensors , 2004 .

[46]  Yücel Altunbasak,et al.  Super-resolution reconstruction of hyperspectral images , 2004, IEEE Transactions on Image Processing.

[47]  Ian D. Reid,et al.  RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Kaichang Di,et al.  3-D Shoreline Extraction from IKONOS Satellite Imagery , 2003 .

[50]  Arnold Bregt,et al.  55-year (1960-2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[51]  Gaofeng Meng,et al.  FusionNet: Edge Aware Deep Convolutional Networks for Semantic Segmentation of Remote Sensing Harbor Images , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[52]  Scale effects of the continental coastline of China , 2011 .

[53]  Xiaofeng Li,et al.  Coastline Extraction Using Dual-Polarimetric COSMO-SkyMed PingPong Mode SAR Data , 2014, IEEE Geoscience and Remote Sensing Letters.

[54]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[55]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[56]  M. Manley Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. , 2014, Chemical Society reviews.

[57]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  James D. Spinhirne,et al.  Micro pulse lidar , 1993, IEEE Trans. Geosci. Remote. Sens..

[60]  H. Liu,et al.  Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods , 2004 .

[61]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[62]  Yoshua Bengio,et al.  The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[63]  Jitao Yu,et al.  Study on headland-bay sandy coast stability in South China coasts , 2011 .

[64]  Rasmus Fensholt,et al.  Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery , 2014 .

[65]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[66]  Jing Wang,et al.  Automatic sub-pixel coastline extraction based on spectral mixture analysis using EO-1 Hyperion data , 2018, Frontiers of Earth Science.

[67]  Hyun-chong Cho,et al.  Fusing landscape accuracy-dependent SRTM elevation data with NGDC and LiDAR data for the Florida coastline , 2012 .

[68]  X. Tong,et al.  Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction , 2016 .

[69]  E. Wagenmakers,et al.  AIC model selection using Akaike weights , 2004, Psychonomic bulletin & review.

[70]  Dorothy K. Hall,et al.  Sea ice surface temperature product from MODIS , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[71]  Bo Huang,et al.  Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery , 2018, Remote Sensing of Environment.

[72]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[73]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .

[74]  Xiyong Hou,et al.  Characteristics of coastline changes in mainland China since the early 1940s , 2016, Science China Earth Sciences.