Microenvironment and multiple myeloma spread.

[1]  D. Ribatti,et al.  Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies , 2014, Leukemia.

[2]  G. Roodman,et al.  Myeloma bone disease: Pathophysiology and management , 2013, Journal of bone oncology.

[3]  G. Morgan,et al.  Effects of induction and maintenance plus long-term bisphosphonates on bone disease in patients with multiple myeloma: the Medical Research Council Myeloma IX Trial. , 2012, Blood.

[4]  P. Cirri,et al.  Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression , 2012, Cancer and Metastasis Reviews.

[5]  H. Henk,et al.  Persistency with zoledronic acid is associated with clinical benefit in patients with multiple myeloma , 2012, American journal of hematology.

[6]  M. Boccadoro,et al.  SIE, SIES, GITMO evidence-based guidelines on novel agents (thalidomide, bortezomib, and lenalidomide) in the treatment of multiple myeloma , 2012, Annals of Hematology.

[7]  D. Ribatti Bone marrow vascular niche and the control of tumor growth in hematological malignancies , 2010, Leukemia.

[8]  A. Cardoso,et al.  Stem cell regulatory niches and their role in normal and malignant hematopoiesis , 2010, Current opinion in hematology.

[9]  S. Shapiro,et al.  Osteoclasts are important for bone angiogenesis. , 2010, Blood.

[10]  N. Munshi,et al.  Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. , 2009, Blood.

[11]  D. Ribatti,et al.  Gene Expression Profiling of Bone Marrow Endothelial Cells in Patients with Multiple Myeloma , 2009, Clinical Cancer Research.

[12]  P. Sonneveld,et al.  Front-line treatment in younger patients with multiple myeloma. , 2009, Seminars in hematology.

[13]  Lei Wu,et al.  The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. , 2009, Microvascular research.

[14]  J. Said,et al.  Pleiotrophin produced by multiple myeloma induces transdifferentiation of monocytes into vascular endothelial cells: a novel mechanism of tumor-induced vasculogenesis. , 2009, Blood.

[15]  Michael L. Wang,et al.  Lenalidomide plus dexamethasone is more effective than dexamethasone alone in patients with relapsed or refractory multiple myeloma regardless of prior thalidomide exposure. , 2008, Blood.

[16]  D. Ribatti,et al.  Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. , 2008, Blood.

[17]  D. Guidolin,et al.  Endothelial Differentiation of Hematopoietic Stem and Progenitor Cells from Patients with Multiple Myeloma , 2008, Clinical Cancer Research.

[18]  E. Crivellato,et al.  Mast cells contribute to vasculogenic mimicry in multiple myeloma. , 2008, Stem cells and development.

[19]  G. Stein,et al.  Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. , 2008, The Journal of clinical investigation.

[20]  D. Ribatti,et al.  Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma , 2008, Oncogene.

[21]  D. Ribatti,et al.  Zoledronic acid affects over-angiogenic phenotype of endothelial cells in patients with multiple myeloma , 2007, Molecular Cancer Therapeutics.

[22]  Michael Wang,et al.  Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. , 2007, The New England journal of medicine.

[23]  Alessandro Corso,et al.  Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. , 2007, The New England journal of medicine.

[24]  Kenneth C. Anderson,et al.  Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets , 2007, Nature Reviews Cancer.

[25]  K. Moriyama,et al.  Myeloma Cell-Osteoclast Interaction Enhances Angiogenesis Together with Bone Resorption: A Role for Vascular Endothelial Cell Growth Factor and Osteopontin , 2007, Clinical Cancer Research.

[26]  B. Barlogie,et al.  Acquired resistance to activated protein C (aAPCR) in multiple myeloma is a transitory abnormality associated with an increased risk of venous thromboembolism , 2006, British journal of haematology.

[27]  D. Ribatti,et al.  Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma , 2006, Oncogene.

[28]  S. Jagannath,et al.  Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. , 2006, Blood.

[29]  Linheng Li,et al.  The stem cell niches in bone. , 2006, The Journal of clinical investigation.

[30]  D. Scadden,et al.  The hematopoietic stem cell in its place , 2006, Nature Immunology.

[31]  D. Chauhan,et al.  Cytokines and signal transduction. , 2005, Best practice & research. Clinical haematology.

[32]  S. Rafii,et al.  The bone marrow vascular niche: home of HSC differentiation and mobilization. , 2005, Physiology.

[33]  D. Ribatti,et al.  Therapeutic renaissance of thalidomide in the treatment of haematological malignancies , 2005, Leukemia.

[34]  Hong Zhang,et al.  Circulating endothelial progenitor cells in multiple myeloma: implications and significance. , 2005, Blood.

[35]  D. Ribatti,et al.  Bone marrow endothelial cells in multiple myeloma secrete CXC‐chemokines that mediate interactions with plasma cells , 2005, British journal of haematology.

[36]  K. Moriyama,et al.  Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. , 2004, Blood.

[37]  Keisuke Ito,et al.  Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche , 2004, Cell.

[38]  N. Munshi,et al.  Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma , 2003, Oncogene.

[39]  C. Beam,et al.  Genotypic and phenotypic comparisons of de novo and acquired melphalan resistance in an isogenic multiple myeloma cell line model. , 2003, Cancer research.

[40]  D. Guidolin,et al.  Endothelial cells in the bone marrow of patients with multiple myeloma. , 2003, Blood.

[41]  C. Logothetis,et al.  Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. , 2003, Molecular cancer therapeutics.

[42]  R. Bataille,et al.  Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. , 2003, Blood.

[43]  E. van Marck,et al.  Zoledronic Acid Treatment of 5T2MM‐Bearing Mice Inhibits the Development of Myeloma Bone Disease: Evidence for Decreased Osteolysis, Tumor Burden and Angiogenesis, and Increased Survival , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[44]  N. Munshi,et al.  Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. , 2002, Blood.

[45]  P. Richardson,et al.  Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications , 2001, Leukemia.

[46]  D. Chauhan,et al.  Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma , 2001, Oncogene.

[47]  P. Richardson,et al.  The role of tumor necrosis factor α in the pathophysiology of human multiple myeloma: therapeutic applications , 2001, Oncogene.

[48]  G. Morgan,et al.  Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. , 2001, Blood.

[49]  B. Klein,et al.  Insulin‐like growth factor induces the survival and proliferation of myeloma cells through an interleukin‐6‐independent transduction pathway , 2000, British journal of haematology.

[50]  W. Dalton,et al.  Adhesion to fibronectin via β1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR) , 2000, Oncogene.

[51]  W. Berdel,et al.  Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. , 2000, Blood.

[52]  S. Rafii,et al.  Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. , 2000, Blood.

[53]  D. Ribatti,et al.  Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. , 1999, Blood.

[54]  W. Dalton,et al.  Cell Adhesion Mediated Drug Resistance (CAM-DR): Role of Integrins and Resistance to Apoptosis in Human Myeloma Cell Lines , 1999 .

[55]  D. Ribatti,et al.  Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma , 1999, British Journal of Cancer.

[56]  J. Kearney,et al.  AC133, a novel marker for human hematopoietic stem and progenitor cells. , 1997, Blood.

[57]  A. Waage,et al.  Hepatocyte growth factor and its receptor c-met in multiple myeloma. , 1996, Blood.

[58]  J. Erban,et al.  Acquired free protein S deficiency associated with multiple myeloma: A case report , 1996, American journal of hematology.

[59]  R. Bataille,et al.  Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease. , 1989, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[60]  R. Nachman,et al.  Inhibition of fibrin monomer polymerization by lambda myeloma globulins. , 1972, Blood.

[61]  D. Ribatti,et al.  Bortezomib and zoledronic acid on angiogenic and vasculogenic activities of bone marrow macrophages in patients with multiple myeloma. , 2010, European journal of cancer.

[62]  M. Dimopoulos,et al.  Treatment of patients with relapsed/refractory multiple myeloma with lenalidomide and dexamethasone with or without bortezomib: prospective evaluation of the impact of cytogenetic abnormalities and of previous therapies , 2010, Leukemia.

[63]  D. Chauhan,et al.  Targeting proteasomes as therapy in multiple myeloma. , 2008, Advances in experimental medicine and biology.

[64]  D. Ribatti,et al.  Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. , 2006, Cancer research.

[65]  A. Dalgleish,et al.  Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. , 2005, Microvascular research.

[66]  麻生 義則 Osteopontin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic bone , 2001 .