Monitoring and control of beta-distributed multistage production processes

Abstract Multistage statistical process control (SPC) is an effective procedure for ensuring quality of products in multistage manufacturing processes. Effective SPC approaches for monitoring and controlling quality in multistage processes are limited. Beta distributed data explained by process input variables are generally prevalent in multistage process industries. In this paper, we propose a generalized linear model for beta-distributed data in multistage processes in order to estimate the distribution parameters and develop two approaches for process monitoring and control: they are model-based SPC charts and a beta regression model. The proposed control charts outperform the existing control charts in terms of the out-of-control average run length for the detection of process mean shifts.

[1]  Klaus D. Schmidt A note on the overdispersed Poisson family , 2002 .

[2]  Fugee Tsung,et al.  A chart allocation strategy for multistage processes , 2009 .

[3]  Khalifa N. Al-Khalifa,et al.  Multivariate statistical process control charts based on the approximate sequential χ2 test , 2014 .

[4]  D. Hawkins Multivariate quality control based on regression-adjusted variables , 1991 .

[5]  Theodora Kourti,et al.  Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start‐ups and grade transitions , 2003 .

[6]  Kumar Rajaram,et al.  Analyzing variability in continuous processes , 2004, Eur. J. Oper. Res..

[7]  Jianjun Shi,et al.  Quality control and improvement for multistage systems: A survey , 2009 .

[8]  Jian Liu,et al.  Quality-assured setup planning based on the stream-of-variation model for multi-stage machining processes , 2009 .

[9]  N. R. Bursian,et al.  Production of nonethylated A-76 gasoline by isomerization of gasoline fractions and reforming raffinate , 1988 .

[10]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[11]  Rajagopalan Srinivasan,et al.  Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control , 2008, Comput. Chem. Eng..

[12]  A. Zeileis,et al.  Beta Regression in R , 2010 .

[13]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[14]  Subhabrata Chakraborti Run length, average run length and false alarm rate of shewhart x-bar chart: exact derivations by conditioning , 2000 .

[15]  Philippe Castagliola,et al.  Computational Statistics and Data Analysis an Ewma Chart for Monitoring the Process Standard Deviation When Parameters Are Estimated , 2022 .

[16]  G. C. Runger,et al.  Model-based process monitoring using robust generalized linear models , 2005 .

[17]  Kailash C. Kapur,et al.  Design of Multiple Cause-Selecting Charts for Multistage Processes with Model Uncertainty , 2004 .

[18]  Furong Gao,et al.  A survey on multistage/multiphase statistical modeling methods for batch processes , 2009, Annu. Rev. Control..

[19]  Jian Liu,et al.  Engineering-Driven Factor Analysis for Variation Source Identification in Multistage Manufacturing Processes , 2008 .

[20]  Elsayed A. Elsayed,et al.  Generalized smoothing parameters of a multivariate EWMA control chart , 2017 .

[21]  Khalifa N. Al-Khalifa,et al.  Adaptive cumulative sum charts with the adaptive runs rule , 2013 .

[22]  Shervin Asadzadeh,et al.  Improving the Product Reliability in Multistage Manufacturing and Service Operations , 2012, Qual. Reliab. Eng. Int..

[23]  Jian Liu,et al.  Predictive Control Considering Model Uncertainty for Variation Reduction in Multistage Assembly Processes , 2010, IEEE Transactions on Automation Science and Engineering.

[24]  Abbas Saghaei,et al.  Compound-Estimator Based Cause-Selecting Control Chart for Monitoring Multistage Processes , 2011, Commun. Stat. Simul. Comput..

[25]  Jinho Kim,et al.  Economic cost models of integrated APC controlled SPC charts , 2012 .

[26]  Abdel Magid Hamouda,et al.  An adaptive step-down procedure for fault variable identification , 2016 .

[27]  M.K. Jeong,et al.  Optimal automatic control of multistage production processes , 2005, IEEE Transactions on Semiconductor Manufacturing.

[28]  Philippe Castagliola,et al.  The Exact Run Length Distribution and Design of the Shewhart Chart with Estimated Parameters Based on Median Run Length , 2016, Commun. Stat. Simul. Comput..

[29]  Connie M. Borror,et al.  Process monitoring for correlated gamma‐distributed data using generalized‐linear‐model‐based control charts , 2003 .

[30]  D. Pierce,et al.  Residuals in Generalized Linear Models , 1986 .

[31]  Fugee Tsung,et al.  Chart allocation strategy for serial-parallel multistage manufacturing processes , 2010 .

[32]  Peihua Qiu Introduction to Statistical Process Control , 2013 .

[33]  Connie M. Borror,et al.  Process monitoring for mean shifts for multiple stage processes , 2007 .

[34]  Michael B. C. Khoo,et al.  Optimal Statistical Design of a Multivariate EWMA Chart Based on ARL and MRL , 2006 .

[35]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[36]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[37]  Shervin Asadzadeh,et al.  Monitoring dependent process steps using robust cause‐selecting control charts , 2009, Qual. Reliab. Eng. Int..

[38]  Shervin Asadzadeh,et al.  Monitoring and Diagnosing Multistage Processes: A Review of Cause Selecting Control Charts , 2008 .

[39]  Fugee Tsung,et al.  Statistical process control for multistage processes with binary outputs , 2013 .

[40]  Fugee Tsung,et al.  Detecting and diagnosing covariance matrix changes in multistage processes , 2011 .

[41]  Douglas M. Hawkins,et al.  Regression Adjustment for Variables in Multivariate Quality Control , 1993 .