Evidence for the sequestration of hydrogen-bearing volatiles towards the Moon's southern pole-facing slopes

Abstract The Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) detects a widespread suppression of the epithermal neutron leakage flux that is coincident with the pole-facing slopes (PFS) of the Moon’s southern hemisphere. Suppression of the epithermal neutron flux is consistent with an interpretation of enhanced concentrations of hydrogen-bearing volatiles within the upper meter of the regolith. Localized flux suppression in PFS suggests that the reduced solar irradiation and lowered temperature on PFS constrains volatility to a greater extent than in surrounding regions. Epithermal neutron flux mapped with LEND’s Collimated Sensor for Epithermal Neutrons (CSETN) was analyzed as a function of slope geomorphology derived from the Lunar Orbiting Laser Altimeter (LOLA) and the results compared to co-registered maps of diurnally averaged temperature from the Diviner Lunar Radiometer Experiment and an averaged illumination map derived from LOLA. The suppression in the average south polar epithermal neutron flux on equator-facing slopes (EFS) and PFS (85–90°S) is 3.3 ± 0.04% and 4.3 ± 0.05% respectively (one-sigma-uncertainties), relative to the average count-rate in the latitude band 45–90°S. The discrepancy of 1.0 ± 0.06% between EFS and PFS neutron flux corresponds to an average of ∼23 parts-per-million-by-weight (ppmw) more hydrogen on PFS than on EFS. Results show that the detection of hydrogen concentrations on PFS is dependent on their spatial scale. Epithermal flux suppression on large scale PFS was found to be enhanced to 5.2 ± 0.13%, a discrepancy of ∼45 ppmw hydrogen relative to equivalent EFS. Enhanced poleward hydration of PFS begins between 50°S and 60°S latitude. Polar regolith temperature contrasts do not explain the suppression of epithermal neutrons on pole-facing slopes. The Supplemental on-line materials include supporting results derived from the uncollimated Lunar Prospector Neutron Spectrometer and the LEND Sensor for Epithermal Neutrons.

[1]  David E. Smith,et al.  Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors , 2012 .

[2]  Richard R. Vondrak,et al.  Hydrogen migration to the lunar poles by solar wind bombardment of the moon , 2002 .

[3]  Mathieu Vincendon,et al.  Water ice at low to midlatitudes on Mars , 2010 .

[4]  Michael W. Davis,et al.  The lunar far‐UV albedo: Indicator of hydration and weathering , 2012 .

[5]  J. N. Goswami,et al.  Chandrayaan-1 mission to the Moon , 2008 .

[6]  A. Hunter,et al.  The Planets: Their Origin and Development , 1952 .

[7]  Wenzhe Fa,et al.  Modeling polarimetric radar scattering from the lunar surface: Study on the effect of physical properties of the regolith layer , 2011 .

[8]  J. Boardman,et al.  Goldschmidt crater and the Moon's north polar region: Results from the Moon Mineralogy Mapper (M3) , 2011 .

[9]  Martin P. Ward,et al.  The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite , 2004 .

[10]  V. Eke,et al.  Models of the distribution and abundance of hydrogen at the lunar south pole , 2007 .

[11]  Gary E. Lofgren The first lunar outpost: The design reference mission and a new era in lunar science , 1993 .

[12]  V. S. Scott,et al.  The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission , 2010 .

[13]  W. Boynton,et al.  Experiment LEND of the NASA Lunar Reconnaissance Orbiter for high-resolution mapping of neutron emission of the Moon. , 2008, Astrobiology.

[14]  A. Vasavada,et al.  Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits☆ , 1999 .

[15]  G. J. Taylor,et al.  Subsurface migration of H2O at lunar cold traps , 2006 .

[16]  Thomas H. Prettyman,et al.  Latitude variation of the subsurface lunar temperature: Lunar Prospector thermal neutrons , 2001 .

[17]  Richard G. Derwent,et al.  Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere , 2003 .

[18]  Dana Hurley Crider,et al.  The solar wind as a possible source of lunar polar hydrogen deposits , 2000 .

[19]  David E. Smith,et al.  Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission , 2007 .

[20]  P. Feldman,et al.  Modeling of the vapor release from the LCROSS impact: 2. Observations from LAMP , 2012 .

[21]  R. Sagdeev,et al.  LEND neutron data processing for the mapping of the Moon , 2012 .

[22]  J. L. Chute,et al.  Apollo 15 measurement of lunar surface brightness temperatures thermal conductivity of the upper 1 1/2 meters of regolith , 1973 .

[23]  S. Maurice,et al.  Reduction of neutron data from Lunar Prospector , 2004 .

[24]  Robert O. Green,et al.  Thermal removal from near‐infrared imaging spectroscopy data of the Moon , 2011 .

[25]  William M. Farrell,et al.  Anticipated electrical environment within permanently shadowed lunar craters , 2010 .

[26]  S. Maurice,et al.  Sensitivity of orbital neutron measurements to the thickness and abundance of surficial lunar water , 2011 .

[27]  David C. Slater,et al.  Far???ultraviolet reflectance properties of the Moon's permanently shadowed regions , 2012 .

[28]  David E. Smith,et al.  Testing lunar permanently shadowed regions for water ice: LEND results from LRO , 2012 .

[29]  David Bazell,et al.  Evidence for Water Ice Near Mercury’s North Pole from MESSENGER Neutron Spectrometer Measurements , 2013, Science.

[30]  R. Wiens,et al.  Evidence for water ice near the lunar poles , 2001 .

[31]  D. Hurley Modeling of the vapor release from the LCROSS impact: Parametric dependencies , 2011 .

[32]  David E. Smith,et al.  Global maps of lunar neutron fluxes from the LEND instrument , 2012 .

[33]  Richard D. Starr,et al.  High Spatial Resolution Studies of Epithermal Neutron Emission from the Lunar Poles: Constraints on Hydrogen Mobility , 2012 .

[34]  J. Garvin,et al.  Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO , 2012 .

[35]  M. D. Dyar,et al.  Thermal stability of water and hydroxyl on the surface of the Moon from temperature-programmed desorption measurements of lunar analog materials , 2011 .

[36]  S. Maurice,et al.  Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles. , 1998, Science.

[37]  Erwan Mazarico,et al.  Illumination conditions of the lunar polar regions using LOLA topography , 2011 .

[38]  William Marshall,et al.  Detection of Water in the LCROSS Ejecta Plume , 2010, Science.

[39]  S. I. Bragin,et al.  The Dynamic Albedo of Neutrons (DAN) experiment for NASA's 2009 Mars Science Laboratory. , 2008, Astrobiology.

[40]  John S. Hendricks,et al.  Dawn’s Gamma Ray and Neutron Detector , 2011 .

[41]  C. Jackson,et al.  The Climate near the Ground , 1966 .

[42]  Andrea Rinaldo,et al.  The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics , 2009 .

[43]  C. Allen,et al.  The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment , 2010 .

[44]  Roger N. Clark,et al.  Detection of Adsorbed Water and Hydroxyl on the Moon , 2009, Science.

[45]  Bruce C. Murray,et al.  The behavior of volatiles on the lunar surface , 1961 .

[46]  M. D. Dyar,et al.  Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 , 2009, Science.

[47]  D. Paige,et al.  Effects of orbital evolution on lunar ice stability , 2010 .

[48]  Christopher T. Russell,et al.  Lunar Reconnaissance Orbiter Mission , 2010 .

[49]  Valerio Carruba,et al.  Lunar Cold Traps: Effects of Double Shielding , 1999 .

[50]  John W. Keller,et al.  Lunar Reconnaissance Orbiter (LRO): Observations for Lunar Exploration and Science , 2010 .

[51]  Carle M. Pieters,et al.  Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3) , 2011 .

[52]  David E. Smith,et al.  Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter , 2011 .

[53]  A. S. Kozyrev,et al.  Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND , 2010, Science.

[54]  Kelly Snook,et al.  Diviner Lunar Radiometer Observations of Cold Traps in the Moon’s South Polar Region , 2010, Science.

[55]  G. Leonard Tyler,et al.  Reanalysis of Clementine bistatic radar data from the lunar South Pole , 1999 .

[56]  H. J. Melosh,et al.  The global albedo of the Moon at 1064 nm from LOLA , 2014 .

[57]  Christopher Potter,et al.  Simulating the impacts of disturbances on forest carbon cycling in North America: processes, data, models, and challenges , 2011 .

[58]  Lori M. Feaga,et al.  Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft , 2009, Science.

[59]  J. Lelieveld,et al.  HOx budgets during HOxComp: A case study of HOx chemistry under NOx‐limited conditions , 2012 .

[60]  David E. Smith,et al.  IJ Constraints on the volatile distribution within Shackleton crater at the lunar south pole , 2012 .

[61]  P. W. Levy,et al.  PROTON-INDUCED HYDROXYL FORMATION ON THE LUNAR SURFACE , 1966 .

[62]  A. S. Kozyrev,et al.  Lunar Exploration Neutron Detector for the NASA Lunar Reconnaissance Orbiter , 2005 .

[63]  C. Lichtenberg,et al.  The clementine bistatic radar experiment: Evidence for ice on the moon , 1998 .

[64]  W. E. Larson,et al.  Integration of In-Situ Resource Utilization Into Lunar/Mars Exploration Through Field Analogs , 2011 .

[65]  James R. Arnold,et al.  Ice in the lunar polar regions , 1979 .