The transposable element-derived transcript of LIN28B has a placental origin and is not specific to tumours

[1]  Ming-an Sun,et al.  Regulation of endogenous retrovirus–derived regulatory elements by GATA2/3 and MSX2 in human trophoblast stem cells , 2023, Genome research.

[2]  Rohan M. Lewis,et al.  Regulation of human trophoblast gene expression by endogenous retroviruses , 2022, bioRxiv.

[3]  T. Macfarlan,et al.  Transposable elements shape the evolution of mammalian development , 2021, Nature Reviews Genetics.

[4]  Erin C. Macaulay,et al.  RepExpress: A Novel Pipeline for the Quantification and Characterization of Transposable Element Expression from RNA‐seq Data , 2021, Current protocols.

[5]  R. Roberts,et al.  Syncytins expressed in human placental trophoblast. , 2021, Placenta.

[6]  G. Cristofari,et al.  Measuring and interpreting transposable element expression , 2020, Nature Reviews Genetics.

[7]  S. Patra Roles of OCT4 in pathways of embryonic development and cancer progression , 2020, Mechanisms of Ageing and Development.

[8]  Erin C. Macaulay,et al.  Reawakening the Developmental Origins of Cancer Through Transposable Elements , 2020, Frontiers in Oncology.

[9]  G. Bouma,et al.  The Role of LIN28-let-7-ARID3B Pathway in Placental Development , 2020, International journal of molecular sciences.

[10]  T. Spencer,et al.  Trophectoderm-Specific Knockdown of LIN28 Decreases Expression of Genes Necessary for Cell Proliferation and Reduces Elongation of Sheep Conceptus , 2020, International journal of molecular sciences.

[11]  J. Wysocka,et al.  Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes , 2020, Philosophical Transactions of the Royal Society B.

[12]  N. Jansz DNA methylation dynamics at transposable elements in mammals. , 2019, Essays in biochemistry.

[13]  Elie N. Farah,et al.  Transcriptionally Active HERV-H Retrotransposons Demarcate Topologically Associating Domains in Human Pluripotent Stem Cells , 2019, Nature Genetics.

[14]  M. Seno,et al.  Conversion of Stem Cells to Cancer Stem Cells: Undercurrent of Cancer Initiation , 2019, Cancers.

[15]  Nakul M. Shah,et al.  Transposable elements drive widespread expression of oncogenes in human cancers , 2019, Nature Genetics.

[16]  G. Bourque,et al.  Ten things you should know about transposable elements , 2018, Genome Biology.

[17]  John H. Lockhart,et al.  Decreased LIN28B in preeclampsia impairs human trophoblast differentiation and migration , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[18]  M. Bronchud Are aggressive epithelial cancers ‘a disease’ of Eutherian mammals? , 2018, Ecancermedicalscience.

[19]  Yan Li,et al.  A LIN28B Tumor-Specific Transcript in Cancer. , 2018, Cell reports.

[20]  J. Iwakiri,et al.  Identification of Transposable Elements Contributing to Tissue-Specific Expression of Long Non-Coding RNAs , 2018, Genes.

[21]  Erin C. Macaulay,et al.  The Genes of Life and Death: A Potential Role for Placental‐Specific Genes in Cancer , 2017, BioEssays : news and reviews in molecular, cellular and developmental biology.

[22]  Zachary D. Smith,et al.  Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer , 2017, Nature.

[23]  K. Burns Transposable elements in cancer , 2017, Nature Reviews Cancer.

[24]  D. Mager,et al.  Endogenous retroviral promoter exaptation in human cancer , 2016, Mobile DNA.

[25]  D. Mager,et al.  Endogenous retroviral promoter exaptation in human cancer , 2016, Mobile DNA.

[26]  C. Feschotte,et al.  Regulatory activities of transposable elements: from conflicts to benefits , 2016, Nature Reviews Genetics.

[27]  D. Tenen,et al.  SALL4, the missing link between stem cells, development and cancer. , 2016, Gene.

[28]  Mohammad M. Karimi,et al.  Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma , 2016, Oncogene.

[29]  G. Faulkner,et al.  Transposable elements in the mammalian embryo: pioneers surviving through stealth and service , 2016, Genome Biology.

[30]  B. Kalionis,et al.  Epithelial-mesenchymal transition during extravillous trophoblast differentiation , 2016, Cell adhesion & migration.

[31]  D. Trono,et al.  The developmental control of transposable elements and the evolution of higher species. , 2015, Annual review of cell and developmental biology.

[32]  Zhenfeng Zhang,et al.  Lin28B promotes melanoma growth by mediating a microRNA regulatory circuit. , 2015, Carcinogenesis.

[33]  Dong Wang,et al.  Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer , 2015, Molecular Cancer.

[34]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[35]  Gérard Pierron,et al.  Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials , 2015, Proceedings of the National Academy of Sciences.

[36]  L. Hurst,et al.  Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells , 2014, Nature.

[37]  Graziano Martello,et al.  The nature of embryonic stem cells. , 2014, Annual review of cell and developmental biology.

[38]  J. Menéndez,et al.  Metabostemness: A New Cancer Hallmark , 2014, Front. Oncol..

[39]  Yasuhiro Yamada,et al.  Concise Review: Dedifferentiation Meets Cancer Development: Proof of Concept for Epigenetic Cancer , 2014, Stem cells translational medicine.

[40]  John T. Powers,et al.  Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models. , 2014, Cancer cell.

[41]  Ian M. Morison,et al.  DMAP: differential methylation analysis package for RRBS and WGBS data , 2014, Bioinform..

[42]  S. Martínez,et al.  The Lin28/Let-7 System in Early Human Embryonic Tissue and Ectopic Pregnancy , 2014, PloS one.

[43]  R. Saffery,et al.  Placental pseudo-malignancy from a DNA methylation perspective: unanswered questions and future directions , 2013, Front. Genet..

[44]  S. Chiou,et al.  Targeting cancer stem cells: emerging role of Nanog transcription factor , 2013, OncoTargets and therapy.

[45]  Michael Hadjiargyrou,et al.  The Intertwining of Transposable Elements and Non-Coding RNAs , 2013, International journal of molecular sciences.

[46]  Elisabeth Brambilla,et al.  Ectopic Activation of Germline and Placental Genes Identifies Aggressive Metastasis-Prone Lung Cancers , 2013, Science Translational Medicine.

[47]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[48]  Jianbiao Zhou,et al.  LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells. , 2013, The international journal of biochemistry & cell biology.

[49]  Wendy P Robinson,et al.  The human placenta methylome , 2013, Proceedings of the National Academy of Sciences.

[50]  Shanrong Liu,et al.  Pluripotency transcription factors and cancer stem cells: small genes make a big difference , 2013, Chinese journal of cancer.

[51]  Zachary D. Smith,et al.  DNA methylation: roles in mammalian development , 2013, Nature Reviews Genetics.

[52]  J. Baker,et al.  Endogenous retroviruses function as species-specific enhancer elements in the placenta , 2013, Nature Genetics.

[53]  David R. Kelley,et al.  Transposable elements reveal a stem cell-specific class of long noncoding RNAs , 2012, Genome Biology.

[54]  P. Feliciano Targeting cancer stem cells , 2012, Nature Genetics.

[55]  Peter Dirks,et al.  Cancer stem cells: an evolving concept , 2012, Nature Reviews Cancer.

[56]  G. Bourque,et al.  Transposable elements have rewired the core regulatory network of human embryonic stem cells , 2010, Nature Genetics.

[57]  I. Simon,et al.  DNA methylation and gene expression , 2010, Wiley interdisciplinary reviews. Systems biology and medicine.

[58]  S. Hiendleder,et al.  Distinct patterns of gene-specific methylation in mammalian placentas: implications for placental evolution and function. , 2010, Placenta.

[59]  Louise C Laurent,et al.  DNA methylation in embryonic stem cells , 2009, Journal of cellular biochemistry.

[60]  B. Gaut,et al.  Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. , 2009, Genome research.

[61]  J. Kawai,et al.  The regulated retrotransposon transcriptome of mammalian cells , 2009, Nature Genetics.

[62]  Z. Herceg,et al.  Epigenetic interplay between histone modifications and DNA methylation in gene silencing. , 2008, Mutation research.

[63]  A. Bird,et al.  DNA methylation landscapes: provocative insights from epigenomics , 2008, Nature Reviews Genetics.

[64]  D. Mager,et al.  Widely variable endogenous retroviral methylation levels in human placenta , 2007, Nucleic acids research.

[65]  H. Cedar,et al.  Role of DNA Methylation in Stable Gene Repression* , 2007, Journal of Biological Chemistry.

[66]  V. Dangles-Marie,et al.  Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. , 2006, Human reproduction update.

[67]  M. Ehrlich,et al.  DNA methylation in cancer: too much, but also too little , 2002, Oncogene.

[68]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[69]  C. Feschotte The contribution of transposable elements to the evolution of regulatory networks , 2008 .

[70]  C. Roberts,et al.  Growth and function of the normal human placenta. , 2004, Thrombosis research.