Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation

During the past few years, the idea of using meshless methods for numerical solution of partial differential equations (PDEs) has received much attention throughout the scientific community, and remarkable progress has been achieved on meshless methods. The meshless local Petrov-Galerkin (MLPG) method is one of the ''truly meshless'' methods since it does not require any background integration cells. The integrations are carried out locally over small sub-domains of regular shapes, such as circles or squares in two dimensions and spheres or cubes in three dimensions. In this paper the MLPG method for numerically solving the non-linear two-dimensional sine-Gordon (SG) equation is developed. A time-stepping method is employed to deal with the time derivative and a simple predictor-corrector scheme is performed to eliminate the non-linearity. A brief discussion is outlined for numerical integrations in the proposed algorithm. Some examples involving line and ring solitons are demonstrated and the conservation of energy in undamped SG equation is investigated. The final numerical results confirm the ability of proposed method to deal with the unsteady non-linear problems in large domains.

[1]  B. A. Malomed,et al.  Decay of shrinking solitons in multidimensional sine-Gordon equation , 1987 .

[2]  V. G. Makhankov,et al.  On the Pulsed Soliton Lifetime in Two Classical Relativistic Theory Models , 1976 .

[3]  E. Maslov,et al.  Dynamics of rotationally symmetric solitons in near-SG field model with applications to large-area Josephson junctions and ferromagnets , 1985 .

[4]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[5]  E. M. Maslov Rotationally symmetric sG oscillator with tunable frequency , 1988 .

[6]  Vladimir Sladek,et al.  Inverse heat conduction problems by meshless local Petrov–Galerkin method , 2006 .

[7]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[8]  Darminto,et al.  Static and dynamic properties of fluxons in a zig-zag 0-π Josephson junction , 2007 .

[9]  L. Vázquez,et al.  Numerical solution of the sine-Gordon equation , 1986 .

[10]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[11]  A. G. Bratsos An explicit numerical scheme for the Sine‐Gordon equation in 2+1 dimensions , 2005 .

[12]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[13]  A. G. Bratsos The solution of the two-dimensional sine-Gordon equation using the method of lines , 2007 .

[14]  M. Schanz,et al.  Meshless local Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic solids , 2006 .

[15]  I. L. Bogolyubskii Oscillating particle-like solutions of the nonlinear Klein-Gordon equation , 1976 .

[16]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[17]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[18]  Mehdi Dehghan,et al.  The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation , 2008 .

[19]  A. G. Bratsos An improved numerical scheme for the sine‐Gordon equation in 2+1 dimensions , 2008 .

[20]  G. Y. Li,et al.  A modified meshless local Petrov-Galerkin method to elasticity problems in computer modeling and simulation , 2006 .

[21]  M. Lakshmanan,et al.  Kadomstev-Petviashvile and two-dimensional sine-Gordon equations: reduction to Painleve transcendents , 1979 .

[22]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[23]  Li Guangyao,et al.  A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem , 2006 .

[24]  Athanassios G. Bratsos,et al.  A third order numerical scheme for the two-dimensional sine-Gordon equation , 2007, Math. Comput. Simul..

[25]  M. A. Helal,et al.  Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics , 2002 .

[26]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[27]  Mehdi Dehghan,et al.  Boundary element solution of the two-dimensional sine-Gordon equation using continuous linear elements , 2009 .

[28]  Davide Spinello,et al.  Treatment of material discontinuity in two meshless local Petrov–Galerkin (MLPG) formulations of axisymmetric transient heat conduction , 2004 .

[29]  Mehdi Dehghan,et al.  The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation , 2008 .

[30]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[31]  S. Atluri The meshless method (MLPG) for domain & BIE discretizations , 2004 .

[32]  George Leibbrandt,et al.  New exact solutions of the classical sine-Gordon equation in 2 + 1 and 3 + 1 dimensions , 1978 .

[33]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[34]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[35]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[36]  W. G. Price,et al.  Numerical solutions of a damped Sine-Gordon equation in two space variables , 1995 .

[37]  Mehdi Dehghan,et al.  The boundary integral equation approach for numerical solution of the one‐dimensional Sine‐Gordon equation , 2008 .

[38]  I. L. Bogolyubskii,et al.  Lifetime of pulsating solitons in certain classical models , 1976 .

[39]  Peter Leth Christiansen,et al.  Return effect for rotationally symmetric solitary wave solutions to the sine-Gordon equation , 1978 .

[40]  M. Dehghan,et al.  Meshless Local Petrov--Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity , 2009 .

[41]  Ryogo Hirota,et al.  Exact Three-Soliton Solution of the Two-Dimensional Sine-Gordon Equation , 1973 .

[42]  Vladimir Sladek,et al.  Analysis of orthotropic thick plates by meshless local Petrov–Galerkin (MLPG) method , 2006 .

[43]  P. S. Lomdahl,et al.  Numerical study of 2+1 dimensional sine-Gordon solitons , 1981 .

[44]  Peter S. Lomdahl,et al.  Oscillations of Eccentric Pulsons , 1997 .

[45]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[46]  John Argyris,et al.  Finite element approximation to two-dimensional sine-Gordon solitons , 1991 .

[47]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[48]  Athanassios G. Bratsos,et al.  A modified predictor–corrector scheme for the two-dimensional sine-Gordon equation , 2007, Numerical Algorithms.

[49]  Søren Madsen,et al.  Search for the in-phase flux flow mode in stacked Josephson junctions , 2006 .

[50]  Boris A. Malomed,et al.  Dynamics of quasi-one dimensional kinks in the two-dimensional sine-Gordon model , 1991 .

[51]  J. Zagrodziński,et al.  Particular solutions of the sine-Gordon equation in 2 + 1 dimensions , 1979 .

[52]  Michael A. McCarthy,et al.  Meshless analysis of the obstacle problem for beams by the MLPG method and subdomain variational formulations , 2003 .

[53]  Abdul-Qayyum M. Khaliq,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme , 2005, Math. Comput. Simul..

[54]  Abdul-Majid Wazwaz,et al.  Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations , 2006 .

[55]  A. Wazwaz The tanh method and a variable separated ODE method for solving double sine-Gordon equation , 2006 .

[56]  Vladimir Sladek,et al.  Meshless local Petrov–Galerkin (MLPG) method for Reissner–Mindlin plates under dynamic load , 2007 .