Computing inversion-free mappings by simplex assembly

We present a novel method, called Simplex Assembly, to compute inversion-free mappings with low or bounded distortion on simplicial meshes. Our method involves two steps: simplex disassembly and simplex assembly. Given a simplicial mesh and its initial piecewise affine mapping, we project the affine transformation associated with each simplex into the inversion-free and distortion-bounded space. The projection disassembles the input mesh into disjoint simplices. The disjoint simplices are then assembled to recover the original connectivity by minimizing the mapping distortion and the difference of the disjoint vertices with respect to the piecewise affine transformations, while the piecewise affine mapping is restricted inside the feasible space. Due to the use of affine transformations as variables, our method explicitly guarantees that no inverted simplex occurs, and that the mapping distortion is below the bound during the optimization. Compared with existing methods, our method is robust to an initialization with many inverted elements and positional constraints. We demonstrate the efficiency and robustness of our method through a variety of geometric processing tasks.

[1]  Olga Sorkine-Hornung,et al.  Locally Injective Mappings , 2013 .

[2]  Yaron Lipman,et al.  Injective and bounded distortion mappings in 3D , 2013, ACM Trans. Graph..

[3]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[4]  Ofir Weber,et al.  Bounded distortion harmonic mappings in the plane , 2015, ACM Trans. Graph..

[5]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[6]  Olga Sorkine-Hornung,et al.  Integrable PolyVector fields , 2015, ACM Trans. Graph..

[7]  Ronen Basri,et al.  Large-scale bounded distortion mappings , 2015, ACM Trans. Graph..

[8]  Keenan Crane,et al.  Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..

[9]  Roi Poranne,et al.  Provably good planar mappings , 2014, ACM Trans. Graph..

[10]  A. Ivanov,et al.  Minimal Networks: The Steiner Problem and Its Generalizations , 1994 .

[11]  Yao Jin,et al.  Remeshing‐assisted Optimization for Locally Injective Mappings , 2014, Comput. Graph. Forum.

[12]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[13]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[14]  Eftychios Sifakis,et al.  Fast and Robust Inversion‐Free Shape Manipulation , 2016, Comput. Graph. Forum.

[15]  Denis Zorin,et al.  Locally injective parametrization with arbitrary fixed boundaries , 2014, ACM Trans. Graph..

[16]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[17]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[18]  Denis Zorin,et al.  Strict minimizers for geometric optimization , 2014, ACM Trans. Graph..

[19]  Pierre Poulin,et al.  Dihedral angle-based maps of tetrahedral meshes , 2015, ACM Trans. Graph..

[20]  Denis Zorin,et al.  Computing Extremal Quasiconformal Maps , 2012, Comput. Graph. Forum.

[21]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[22]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[23]  Hans-Peter Seidel,et al.  Linear angle based parameterization , 2007, Symposium on Geometry Processing.

[24]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[25]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[26]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[27]  Yaron Lipman,et al.  Bijective Mappings of Meshes with Boundary and the Degree in Mesh Processing , 2013, SIAM J. Imaging Sci..

[28]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[29]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[30]  Ligang Liu,et al.  Embedding a triangular graph within a given boundary , 2011, Comput. Aided Geom. Des..

[31]  Ronen Basri,et al.  Controlling singular values with semidefinite programming , 2014, ACM Trans. Graph..

[32]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[33]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[34]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[35]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[36]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[37]  Keenan Crane,et al.  Spin transformations of discrete surfaces , 2011, ACM Trans. Graph..

[38]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[39]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[40]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.