The Role of Dimethylammonium in Bandgap Modulation for Stable Halide Perovskites

Halide perovskites with bandgaps of 1.70–1.85 eV are of interest for multijunction photovoltaics. Mixing halides on the X site of the ABX3-structured perovskite system is a common way to reach thes...

[1]  M. Kanatzidis,et al.  Cation Engineering in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites with Mixed Large A-Site Cations in the Cages. , 2020, Journal of the American Chemical Society.

[2]  Lei Guo,et al.  Structural stability and optoelectronic properties of tetragonal MAPbI3 under strain , 2020, Nanotechnology.

[3]  U. Rau,et al.  How to Report Record Open‐Circuit Voltages in Lead‐Halide Perovskite Solar Cells , 2019, Advanced Energy Materials.

[4]  M. Saidaminov,et al.  Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines , 2019, Advanced materials.

[5]  Jia Zhu,et al.  Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink , 2019, Nature Energy.

[6]  Sean P. Dunfield,et al.  Enabling Flexible All-Perovskite Tandem Solar Cells , 2019, Joule.

[7]  Xun Xiao,et al.  Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts , 2019, Science.

[8]  Craig M. Brown,et al.  Dynamical Phase Transitions and Cation Orientation-Dependent Photoconductivity in CH(NH2)2PbBr3 , 2019, ACS Materials Letters.

[9]  Bryon W. Larson,et al.  Rapid Charge-Transfer Cascade through SWCNT Composites Enabling Low-Voltage Losses for Perovskite Solar Cells , 2019, ACS Energy Letters.

[10]  Fei Wang,et al.  Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles , 2019, Organic Electronics.

[11]  M. Green,et al.  Light- and bias-induced structural variations in metal halide perovskites , 2019, Nature Communications.

[12]  Thomas Kirchartz,et al.  Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells , 2018, ACS Energy Letters.

[13]  M. Kanatzidis,et al.  Myths and reality of HPbI3 in halide perovskite solar cells , 2018, Nature Communications.

[14]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[15]  A. Kentgens,et al.  Dimethylammonium Incorporation in Lead Acetate Based MAPbI3 Perovskite Solar Cells. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  C. Ballif,et al.  High-Bandgap Perovskite Materials for Multijunction Solar Cells , 2018, Joule.

[17]  Strain induced electronic structure variation in methyl-ammonium lead iodide perovskite , 2018, Scientific Reports.

[18]  A. Jen,et al.  Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying , 2018 .

[19]  M. Kanatzidis,et al.  Unraveling the Chemical Nature of the 3D "Hollow" Hybrid Halide Perovskites. , 2018, Journal of the American Chemical Society.

[20]  Henry J. Snaith,et al.  Metal halide perovskite tandem and multiple-junction photovoltaics , 2017 .

[21]  Alexander C. Forse,et al.  How Strong Is the Hydrogen Bond in Hybrid Perovskites? , 2017, The journal of physical chemistry letters.

[22]  Jay B. Patel,et al.  Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics , 2017 .

[23]  M. Wasielewski,et al.  Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI3 Perovskites. , 2017, Journal of the American Chemical Society.

[24]  Maximilian T. Hörantner,et al.  The Potential of Multijunction Perovskite Solar Cells , 2017 .

[25]  H. Boyen,et al.  Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. , 2017, Journal of the American Chemical Society.

[26]  M. Wasielewski,et al.  Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3 , 2017, Science Advances.

[27]  Matthew R. Leyden,et al.  Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells , 2017 .

[28]  M. Szafrański,et al.  Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide. , 2016, The journal of physical chemistry letters.

[29]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[30]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[31]  F. Giustino,et al.  Steric engineering of metal-halide perovskites with tunable optical band gaps , 2014, Nature Communications.

[32]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[33]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[34]  David B Mitzi,et al.  Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. , 2005, Inorganic chemistry.

[35]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .