Duality for real and multivariate exponential families

Consider a measure μ on R generating a natural exponential family F(μ) with variance function VF(μ)(m) and Laplace transform exp(lμ(s)) = ∫ Rn exp(−〈s, x〉)μ(dx). A dual measure μ∗ satisfies −l′ μ∗(−l μ(s)) = s. Such a dual measure does not always exist. One important property is l′′ μ∗ (m) = (VF(μ)(m)) −1, leading to the notion of duality among exponential families (or rather among the extended notion of T exponential families TF obtained by considering all translations of a given exponential family F).

[1]  T. Kawata Fourier analysis in probability theory , 1972 .

[2]  C. C. Kokonendji Exponential families with variance functions in $$\sqrt {\Delta P} (\sqrt \Delta )$$ : Seshadri’s class: Seshadri’s class , 1994 .

[3]  R. Paris,et al.  On two extensions of the canonical Feller–Spitzer distribution , 2021 .

[4]  Shaul K. Bar-Lev,et al.  Reproducibility and natural exponential families with power variance functions , 1986 .

[5]  Don Zagier,et al.  The dilogarithm function. , 2007 .

[6]  C. Morris Natural Exponential Families with Quadratic Variance Functions , 1982 .

[7]  B. Jørgensen Exponential Dispersion Models , 1987 .

[8]  Harald Cram'er,et al.  Sur un nouveau théorème-limite de la théorie des probabilités , 2018 .

[9]  Gérard Letac,et al.  The diagonal multivariate natural exponential families and their classification , 1994 .

[10]  Gérard Letac,et al.  Natural Real Exponential Families with Cubic Variance Functions , 1990 .

[11]  Anatol N. Kirillov Dilogarithm identities , 1994 .

[12]  Ananda Sen,et al.  The Theory of Dispersion Models , 1997, Technometrics.

[13]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[14]  Paul Malliavin,et al.  Integration and Probability , 1995, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[15]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[16]  M. Casalis,et al.  Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique , 1991 .

[17]  G. Letac,et al.  The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones , 1996 .

[18]  G. Letac Le problem de la classification des familles exponentielles naturelles de ℝd ayant une fonction variance quadratique , 1989 .

[19]  The $2d+4$ simple quadratic natural exponential families on ${\bf R}\sp d$ , 1996 .