Duality for real and multivariate exponential families
暂无分享,去创建一个
[1] T. Kawata. Fourier analysis in probability theory , 1972 .
[2] C. C. Kokonendji. Exponential families with variance functions in $$\sqrt {\Delta P} (\sqrt \Delta )$$ : Seshadri’s class: Seshadri’s class , 1994 .
[3] R. Paris,et al. On two extensions of the canonical Feller–Spitzer distribution , 2021 .
[4] Shaul K. Bar-Lev,et al. Reproducibility and natural exponential families with power variance functions , 1986 .
[5] Don Zagier,et al. The dilogarithm function. , 2007 .
[6] C. Morris. Natural Exponential Families with Quadratic Variance Functions , 1982 .
[7] B. Jørgensen. Exponential Dispersion Models , 1987 .
[8] Harald Cram'er,et al. Sur un nouveau théorème-limite de la théorie des probabilités , 2018 .
[9] Gérard Letac,et al. The diagonal multivariate natural exponential families and their classification , 1994 .
[10] Gérard Letac,et al. Natural Real Exponential Families with Cubic Variance Functions , 1990 .
[11] Anatol N. Kirillov. Dilogarithm identities , 1994 .
[12] Ananda Sen,et al. The Theory of Dispersion Models , 1997, Technometrics.
[13] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[14] Paul Malliavin,et al. Integration and Probability , 1995, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.
[15] Leonard Lewin,et al. Polylogarithms and Associated Functions , 1981 .
[16] M. Casalis,et al. Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique , 1991 .
[17] G. Letac,et al. The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones , 1996 .
[18] G. Letac. Le problem de la classification des familles exponentielles naturelles de ℝd ayant une fonction variance quadratique , 1989 .
[19] The $2d+4$ simple quadratic natural exponential families on ${\bf R}\sp d$ , 1996 .