Array Pattern Control and Synthesis

Antenna array distributions and their associated patterns are now designed on physical principles, based on placement of zeros of the array polynomial. An overview of the synthesis processes is given. Robust and low Q distributions for linear arrays and circular planar arrays, that provide variable side lobe level pencil beam patterns, are treated in detail. Associated difference patterns are included. Individual side lobes or groups of side lobes may be adjusted in level. The same technique allows synthesis of an efJicient shaped beam, with or without side lobe adjustment. Finally, the ultimate pencil beam array, the superdirective array, is evaluated.

[1]  C.L. Dolph,et al.  A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level , 1946, Proceedings of the IRE.

[2]  H. T. Friis,et al.  Radar antennas , 1947 .

[3]  P. Woodward,et al.  The Theoretical Precision with which an Arbitrary Radiation-Pattern may be Obtained from a Source of Finite Size , 1948 .

[4]  G. M. Kirkpatrick Aperture Illuminations for Radar Angle-of-Arrival Measurements , 1953 .

[5]  R. Stegen,et al.  Excitation Coefficients and Beamwidths of Tschebyscheff Arrays , 1953, Proceedings of the IRE.

[6]  T. Taylor Design of line-source antennas for narrow beamwidth and low side lobes , 1955 .

[7]  T. Taylor,et al.  Design of circular apertures for narrow beamwidth and low sidelobes , 1960 .

[8]  R. Hansen Tables of Taylor distributions for circular aperture antennas , 1960 .

[9]  W. Rotman,et al.  Wide-angle microwave lens for line source applications , 1963 .

[10]  Utilization of the lambda functions in the analysis and synthesis of monopulse antenna difference patterns , 1966 .

[11]  Y. Lo,et al.  Optimization of directivity and signal-to-noise ratio of an arbitrary antenna array , 1966 .

[12]  A. Lopez Monopulse Networks for Series Feeding an Array Antenna , 1967 .

[13]  E. Bayliss Design of monopulse antenna difference patterns with low sidelobes , 1968 .

[14]  R. C. Rudduck,et al.  Directive Gain of Circular Taylor Patterns , 1971 .

[15]  W. R. Jones,et al.  On the Design of Optimum Dual-Series Feed Networks , 1971 .

[16]  R. Hansen Formulation of echelon dipole mutual impedance for computer , 1972 .

[17]  R. R. Kinsey The AN/TPS-59 Antenna Row-Board Design , 1974 .

[18]  David Archer,et al.  Lens-fed multiple beam arrays , 1974 .

[19]  M. Abramowitz,et al.  Mathematical functions and their approximations , 1975 .

[20]  R. Hansen,et al.  A one-parameter circular aperture distribution with narrow beamwidth and low sidelobes , 1976 .

[21]  Robert S. Elliott,et al.  On discretizing continuous aperture distributions , 1977 .

[22]  R. Hansen,et al.  Fundamental limitations in antennas , 1981, Proceedings of the IEEE.

[23]  R. Hansen,et al.  Some new calculations on antenna superdirectivity , 1981, Proceedings of the IEEE.

[24]  M. S. Smith Design considerations for ruze and rotman lenses , 1982 .

[25]  Michael J. Maybell,et al.  Printed rotman lens-fed array having wide bandwith, low sidelobes, constant beamwidth and synthesized radiation pattern , 1983 .

[26]  A. Villeneuve,et al.  Taylor patterns for discrete arrays , 1984 .

[27]  W. L. Weeks,et al.  Microwave Scanning Antennas , 1986 .

[28]  D. L. Johnson,et al.  Octave bandwidth, -35 dB sidelobe single offset pillbox reflector using a rotman lens and array as a primary feed , 1987, 1987 Antennas and Propagation Society International Symposium.

[29]  T.S.M. Maclean,et al.  High-Tc superconducting short dipole antenna , 1988 .

[30]  Robert S. Elliott,et al.  Shaped-pattern synthesis using pure real distributions , 1988 .

[31]  R.C. Hansen,et al.  Superconducting antennas , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.

[32]  Proceedings of the IEEE , 2018, IEEE Journal of Emerging and Selected Topics in Power Electronics.