A groupwise approach for inferring heterogeneous treatment effects in causal inference

There is a growing literature in nonparametric estimation of the conditional average treatment effect given a specific value of covariates. However, this estimate is often difficult to interpret if covariates are high dimensional and in practice, effect heterogeneity is discussed in terms of subgroups of individuals with similar attributes. The paper propose to study treatment heterogeneity under the groupwise framework. Our method is simple, only based on linear regression and sample splitting, and is semiparametrically efficient under assumptions. We also discuss ways to conduct multiple testing. We conclude by reanalyzing a get-out-the-vote experiment during the 2014 U.S. midterm elections.

[1]  Susan Athey,et al.  Recursive partitioning for heterogeneous causal effects , 2015, Proceedings of the National Academy of Sciences.

[2]  Jennifer Hill,et al.  Automated versus Do-It-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition , 2017, Statistical Science.

[3]  H. Leeb,et al.  CAN ONE ESTIMATE THE UNCONDITIONAL DISTRIBUTION OF POST-MODEL-SELECTION ESTIMATORS? , 2003, Econometric Theory.

[4]  A. Gerber,et al.  The Generalizability of Social Pressure Effects on Turnout Across High-Salience Electoral Contexts: Field Experimental Evidence From 1.96 Million Citizens in 17 States , 2017 .

[5]  J. Robins,et al.  Double/Debiased Machine Learning for Treatment and Structural Parameters , 2017 .

[6]  Esther Duflo,et al.  Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments , 2017 .

[7]  C. Blumberg Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction , 2016 .

[8]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[9]  Luke W. Miratrix,et al.  Decomposing Treatment Effect Variation , 2016, Journal of the American Statistical Association.

[10]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[11]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[12]  Sandrine Dudoit,et al.  Multiple Testing Procedures: the multtest Package and Applications to Genomics , 2005 .

[13]  J. H. Steiger,et al.  Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. , 2004, Psychological methods.

[14]  Dylan S. Small,et al.  A powerful approach to the study of moderate effect modification in observational studies , 2017, Biometrics.

[15]  J. Schmee An Introduction to Multivariate Statistical Analysis , 1986 .

[16]  Sören R. Künzel,et al.  Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning , 2017 .

[17]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[18]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[19]  D. Pollard Strong Consistency of $K$-Means Clustering , 1981 .

[20]  O. J. Dunn Estimation of the Means of Dependent Variables , 1958 .

[21]  S. Athey,et al.  Generalized random forests , 2016, The Annals of Statistics.

[22]  Robert Rosenthal,et al.  Computing Contrasts, Effect Sizes, and Counternulls on Other People's Published Data: General Procedures for Research Consumers , 1996 .

[23]  Xiaogang Su,et al.  Subgroup Analysis via Recursive Partitioning , 2009 .

[24]  Marc Ratkovic,et al.  Estimating treatment effect heterogeneity in randomized program evaluation , 2013, 1305.5682.

[25]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[26]  A. Buja,et al.  Valid post-selection inference , 2013, 1306.1059.

[27]  Zongming Ma,et al.  Adaptive Confidence Bands for Nonparametric Regression Functions , 2014, Journal of the American Statistical Association.

[28]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[29]  Dylan S. Small,et al.  Selective inference for effect modification via the lasso , 2017, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[30]  Dylan S. Small,et al.  Effect Modification and Design Sensitivity in Observational Studies , 2013 .

[31]  Shai Ben-David,et al.  Stability of k -Means Clustering , 2007, COLT.

[32]  Peng Ding,et al.  Randomization inference for treatment effect variation , 2014, 1412.5000.

[33]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[34]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[35]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[36]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[37]  W. Newey,et al.  Semiparametric Efficiency Bounds , 1990 .

[38]  Dennis L. Sun,et al.  Optimal Inference After Model Selection , 2014, 1410.2597.

[39]  Xinkun Nie,et al.  Quasi-oracle estimation of heterogeneous treatment effects , 2017, Biometrika.

[40]  Xinkun Nie,et al.  Learning Objectives for Treatment Effect Estimation , 2017 .

[41]  Dylan S. Small,et al.  Strong Control of the Familywise Error Rate in Observational Studies that Discover Effect Modification by Exploratory Methods , 2015 .

[42]  A. Schick On Asymptotically Efficient Estimation in Semiparametric Models , 1986 .

[43]  Christopher R. Genovese,et al.  Adaptive confidence bands , 2007 .

[44]  J. Gower A comparison of some methods of cluster analysis. , 1967, Biometrics.

[45]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[46]  Yufeng Liu,et al.  Estimating individualized treatment rules for ordinal treatments , 2017, Biometrics.

[47]  Dennis L. Sun,et al.  Exact post-selection inference, with application to the lasso , 2013, 1311.6238.

[48]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[49]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[50]  Jonathan Taylor,et al.  Statistical learning and selective inference , 2015, Proceedings of the National Academy of Sciences.

[51]  Jared S. Murray,et al.  Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects (with Discussion) , 2020, 2108.02836.

[52]  Jennifer L. Hill,et al.  Bayesian Nonparametric Modeling for Causal Inference , 2011 .

[53]  Robin Sibson,et al.  SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster Method , 1973, Comput. J..

[54]  Sören R. Künzel,et al.  Metalearners for estimating heterogeneous treatment effects using machine learning , 2017, Proceedings of the National Academy of Sciences.

[55]  Mark G. Low On nonparametric confidence intervals , 1997 .

[56]  P. Richard Hahn,et al.  Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects , 2017, 1706.09523.

[57]  Jeffrey M. Wooldridge,et al.  Solutions Manual and Supplementary Materials for Econometric Analysis of Cross Section and Panel Data , 2003 .